Abnormally low pO2 and oxygen saturations on arterial blood gases (ABGs) test have been reported in the patients who have very high WBC and platelet counts; generally in the setting of hematological malignancies. This is presumably related to the consumption of oxygen by the active cellular elements in the arterial blood sample during the process of ABG analysis. This phenomenon which is also known as "spurious hypoxemia" or "oxygen steal" or "leukocyte/platelet larceny" is suspected when there is no other obvious explanation for hypoxemia on ABG, especially in the setting of normal oxygen saturations by the pulse oximetry. It is important for medical professionals to be aware of this condition so that appropriate workup and triage can be performed on such patients, which may otherwise lead to unnecessary hospitalization and escalation of care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312990PMC
http://dx.doi.org/10.7759/cureus.15942DOI Listing

Publication Analysis

Top Keywords

oxygen saturations
8
arterial blood
8
leukocytosis spurious
4
spurious hypoxemia
4
hypoxemia abnormally low
4
abnormally low po2
4
po2 oxygen
4
saturations arterial
4
blood gases
4
gases abgs
4

Similar Publications

Objective: To analyze the results of nocturnal breathing parameters during sleep based on nocturnal pulse oximetry and to study of characteristics of external respiration in genetically confirmed patients with dystrophic myotonia (DM).

Material And Methods: The subjects of the study were patients with genetically confirmed DM types 1 and 2 who were hospitalized in the neurological departments of the Republican Scientific and Practical Center for Neurology and Neurosurgery. The clinical picture of the disease, comorbidities, sleep questionnaires, laboratory tests, overnight pulse oximetry and spirometry were performed and analyzed.

View Article and Find Full Text PDF

Background: Predicted heart mass ratio (PHMr) has become the standard donor-recipient size matching method in heart transplantation. While utilization of small PHMr hearts is associated with increased one-year mortality, the underlying mechanisms and time horizon of mortality remain uncertain.

Methods: A single institution analysis of isolated heart transplant recipients (01/2019-7/2022) was performed (N=334).

View Article and Find Full Text PDF

Individual FiO guided by SO prevents hyperoxia and reduces postoperative atelectasis in colorectal surgery: A randomized controlled trial.

J Clin Anesth

December 2024

Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, China; The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, China. Electronic address:

Study Objective: To determine whether individualized fraction of inspired oxygen (iFiO) improves pulmonary atelectasis after elective laparoscopic colorectal surgery relative to 60 % FiO.

Design: This was a single-center, prospective, randomized study.

Setting: This study was conducted in a single tertiary care hospital in China.

View Article and Find Full Text PDF

The aim of this retrospective clinical study was to compare the combinations of ketamine/diazepam (KD group) and tiletamine/zolazepam (TZ group) for the induction of general anaesthesia in horses undergoing elective surgery. The data from the clinical and the anaesthetic records of 138 horses from 2021 to 2023 were evaluated, and the horses were divided in two groups: KD ( = 60) and TZ ( = 72). The horses were premedicated with romifidine and methadone IV; anaesthesia was induced with ketamine/diazepam for the KD group and tiletamine/zolazepam for the TZ group and was maintained with isoflurane and a constant rate infusion of romifidine.

View Article and Find Full Text PDF

Selective O/N Separation Using Grazyne Membranes: A Computational Approach Combining Density Functional Theory and Molecular Dynamics.

Nanomaterials (Basel)

December 2024

Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain.

The separation of oxygen (O) and nitrogen (N) from air is a process of utmost importance nowadays, as both species are vital for numerous fundamental processes essential for our development. Membranes designed for their selective molecule separation have become the materials of choice for researchers, primarily due to their ease of use. The present study proposes grazynes, 2D carbon-based materials consisting of and C atoms, as suitable membranes for separating O and N from air.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!