Effectiveness of Nutrient Management on Water Quality Improvement: A Synthesis on Nitrate-Nitrogen Loss from Subsurface Drainage.

Trans ASABE

USEPA Office of Research and Development, Research Triangle Park, North Carolina.

Published: March 2021

AI Article Synopsis

  • Nutrient management practices have been increasingly studied for their influence on crop yields and water quality, particularly focusing on the complexities of the nitrogen cycle.
  • A review of 577 site-years of data from Midwestern U.S. corn fields revealed that higher nitrogen fertilizer rates are linked to better corn yields and increased nitrate export in drainage.
  • While reducing nitrogen fertilizer can lower nitrate losses, this strategy tends to negatively impact the economic returns of continuous corn production, and the effectiveness of organic versus inorganic fertilizers varies significantly due to the uncertainty in organic fertilizer nutrient content.

Article Abstract

Nutrient management, as described in NRCS Code 590, has been intensively investigated, with research largely focused on crop yields and water quality. Yet, due to complex processes and mechanisms in nutrient cycling (especially the nitrogen (N) cycle), there are many challenges in evaluating the effectiveness of nutrient management practices across site conditions. We therefore synthesized data from peer-reviewed publications on subsurface-drained agricultural fields in the Midwest U.S. with corn yield and drainage nitrate-N (NO3-N) export data published from 1980 to 2019. Through literature screening and data extraction from 43 publications, we obtained 577 site-years of data with detailed information on fertilization, corn yields, precipitation, drainage volume, and drainage NO3-N load/concentration or both. In addition, we estimated flow-weighted NO3-N concentrations ([NO3-N]) in drainage for those site-years where only load and volume were reported. Furthermore, we conducted a cost analysis using synthesized and surveyed corn yield data to evaluate the cost-effectiveness of different nutrient management plans. Results from the synthesis showed that N fertilizer rate was strongly positively correlated with corn yields, NO3-N loads, and flow-weighted [NO3-N]. Reducing N fertilizer rates can effectively mitigate NO3-N losses from agricultural fields; however, our cost analysis showed negative economic returns for continuous corn production at lower N rates. In addition, organic fertilizers significantly boosted corn yields and NO3-N losses compared to inorganic fertilizers at comparable rates; however, accurate quantification of plant-available N in organic fertilizers is necessary to guide appropriate nutrient management plans because the nutrient content may be highly variable. In terms of fertilizer application methods, we did not find significant differences in NO3-N export in drainage discharge. Lastly, impact of fertilization timing on NO3-N export varied depending on other factors such as fertilizer rate, source, and weather. According to these results, we suggest that further efforts are still required to produce effective local nutrient management plans. Furthermore, government agencies such as USDA-NRCS need to work with other agencies such as USEPA to address the potential economic losses due to implementation of lower fertilizer rates for water quality improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318126PMC
http://dx.doi.org/10.13031/trans.14078DOI Listing

Publication Analysis

Top Keywords

nutrient management
24
water quality
12
no3-n export
12
corn yields
12
management plans
12
effectiveness nutrient
8
quality improvement
8
agricultural fields
8
corn yield
8
no3-n
8

Similar Publications

Phosphorus (P) movement in soils is influenced by flow velocities, diffusion rates, and several soil characteristics and properties. In acidic soils, P is tightly bound to soil particles, reducing its availability to plants. Organomineral fertilizers combine organic matter with mineral nutrients, enhancing P fertilization efficiency, and reducing environmental impacts.

View Article and Find Full Text PDF

Drought adversely affects the growth and performance of plants. By contrast, the application of organic modifiers can improve plant growth by supplying nutrients and water. The influence of foliar application of organic fertilizer under water deficit conditions on growth traits, chemical composition, and fruit quality of tomato (Lycopersicon esculentum Mill.

View Article and Find Full Text PDF

A convenient but efficient tool for evaluating dietary intakes in Chinese professional athletes has yet to be established. The aim of this study was to assess the validity of a short semi-quantitative food frequency questionnaire (FFQ) through comparison with 3-day weighed food records (3DWFRs) and corresponding serum biomarkers from a cohort of 102 professional athletes, while also evaluating its reproducibility. The relative validity was assessed using Spearman correlation coefficients, cross-quintiles classification, weighted kappa, and Bland-Altman analysis, while reproducibility was evaluated using the Spearman correlation coefficients and intraclass correlation coefficient (ICC) between two FFQs.

View Article and Find Full Text PDF

Increasing pesticide diversity impairs soil microbial functions.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.

View Article and Find Full Text PDF

Estuaries are ecologically sensitive areas influenced by river regulation. Knowledge of how marine megabenthos responds to river regulation and artificial flooding events remains limited. The study aims to provide a comprehensive understanding of the impacts of river regulation on marine megabenthic fauna.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!