Objectives: This study aimed to explore the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral responses and T-cell responses in patients who have recovered from coronavirus disease 2019 (COVID-19) to understand the natural protective immune responses and to facilitate the development of vaccines.
Methods: We conducted a combined assessment of the changes in neutralising antibody levels and SARS-CoV-2-specific T-cell responses over time in 27 patients up to 7 months after infection.
Results: The neutralising antibody remained detectable in 96.3% of the patients at their second visit at about 7 months post-onset of symptoms. However, their humoral responses, including titres of the spike receptor-binding domain IgG and neutralising antibody, decreased significantly compared with those at first clinic visit. By contrast, the proportions of spike-specific CD4 T cells, but not CD8 T cells, in COVID-19 patients after recovery were persistently higher than those in healthy controls. No significant change was observed in the proportion of spike-specific CD4 T cells in patients who had recovered from COVID-19 within 7 months.
Conclusion: The SARS-CoV-2-specific T-cell immune responses persisted, while the neutralising antibodies decayed. Further studies are needed to extend the longevity of neutralising antibodies and to evaluate whether these T cells are sufficient to protect patients from reinfection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313961 | PMC |
http://dx.doi.org/10.1002/cti2.1319 | DOI Listing |
Sci Rep
January 2025
Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
The ongoing emergence of SARS-CoV-2 variants, combined with antigen exposures from different waves and vaccinations, poses challenges in updating COVID-19 vaccine antigens. We collected 206 sera from individuals with vaccination-only, hybrid immunity, and single or repeated omicron post-vaccination infections (PVIs), including non-JN.1 and JN.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
Background: The immunogenicity of current influenza vaccines need improvement. Inactivated influenza and COVID-19 mRNA vaccines can be co-administered but randomized controlled trial data is lacking on whether the two vaccines are more immunogenic if given in the same or opposite arms. Murine studies suggest mRNA vaccines can adjuvant influenza vaccines when co-formulated and delivered together.
View Article and Find Full Text PDFBackground: Hallmark features of AD are well defined, however, the generation of in vitro models of sporadic AD poses a significant challenge due to the complex, undefined etiology and slow progression of this disease. Herpes simplex virus type I (HSV-1) is a pathogen that is gaining increasing attention as a potential causative agent in AD pathogenesis. HSV-1 is a DNA virus that typically resides throughout the peripheral nervous system in a latent state.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
Japanese encephalitis virus (JEV) is a neurotropic zoonotic pathogen that poses a serious threat to public health. Currently, there is no specific therapeutic agent available for JEV infection, primarily due to the complexity of its infection mechanism and pathogenesis. Extracellular vesicles (EVs) have been known to play an important role in viral infection, but their specific functions in JEV infection remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!