Ultraviolet (UV) radiation significantly affects insect life and, as a result, has been widely used to control different invertebrate pests. The current results demonstrate that when first instar nymphs are exposed to UV-A light for 12, 24, 48, and 72 h, their developmental and biological parameters are negatively affected by UV-A exposure; the effect increased with an increase in exposure time. We hypothesized that UV-A light is compatible with other biological control agents. Results showed that when the entomopathogenic fungus was applied to third instar nymphs of previously exposed to UV-A light, the LC was 3.4% lower after 72 h of exposure to UV-A light compared to the control. However, when the fungus was exposed to UV-A light, its virulence decreased with an increase in UV-A exposure time. The parasitism rate of against 24 h UV-A-exposed third instar nymphs of increased while the adult emergence from parasitized nymphs was not affected after UV-A light exposure. Parasitism rate was significantly reduced however following exposure to UV-A light; but again, adult emergence was not affected from parasitized nymphs. The percentage mortality of increased with increasing exposure time to UV-A light. The enzyme activity of SOD, CAT, GST, and AChE and the energy reserve contents were negatively affected due to UV-A exposure. Collectively, this study has demonstrated that UV-A light significantly suppresses the immune system of and that UV-A light is compatible with other biological control agents if it is applied separately from the biological agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289603 | PMC |
http://dx.doi.org/10.1155/2021/2060288 | DOI Listing |
Front Plant Sci
December 2024
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
Introduction: Introduction: Light is not only essential for plant photosynthesis and growth, but also acts as a signal to regulate its secondary metabolism. Despite the influence of light quality on the yield and flavonoid compounds in commercial crops is well-documented, its role in regulating wild understorey species, particularly medicine plants whose flavonoid biosynthesis driven by multiple spectral regions of canopy sunlight, is less understood.
Methods: To address it, we conducted a light-quality manipulation experiment on Georgi, a widespread understorey medicinal species, with light-emitting diodes (LED).
J Photochem Photobiol B
December 2024
Microbiology Study Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Jl. Raya Dramaga, Bogor 16680, West Java, Indonesia. Electronic address:
This study evaluated the photoprotective and antioxidant properties of eumelanin derived from Streptomyces lasalocidi NTB 42 (eumelanin NTB 42). This study also investigated the cellular-level photoprotective effects of eumelanin using Schizosaccharomyces pombe ARC039 as a model organism and its ability to enhance the Sun Protection Factor (SPF) of commercial sunscreens. The thermal and light stability and total phenolic and flavonoid contents were analyzed.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
Department of Chemistry, University of Colorado Boulder Boulder, Colorado 80309, United States.
Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes.
View Article and Find Full Text PDFProg Retin Eye Res
December 2024
ELZA Institute, Webereistrasse 2, CH-8953, Dietikon, Switzerland; Laboratory for Ocular Cell Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206, Geneva, Switzerland. Electronic address:
First introduced over 20 years ago as a treatment for progressive keratoconus, the original "Dresden" corneal cross-linking (CXL) protocol involved riboflavin saturation of the stroma, followed by 30 min of 3 mW/cm-intensity ultraviolet-A (UV-A) irradiation. This procedure generates reactive oxygen species (ROS) that cross-link stromal molecules, thereby stiffening the cornea and counteracting the ectasia-induced weakening. Due to their large size, riboflavin molecules cannot readily pass through the corneal epithelial cell tight junctions; thus, epithelial debridement was performed.
View Article and Find Full Text PDFJ Cataract Refract Surg
December 2024
ELZA Institute, Dietikon, Switzerland.
Purpose: To investigate the light transmission (LT) of UV-A and green light through infected corneas saturated with riboflavin or rose bengal in an ex vivo porcine model for infectious keratitis.
Setting: University of Zurich and EMPA.
Design: Laboratory study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!