Revisiting the Antigen-Presenting Function of β Cells in T1D Pathogenesis.

Front Immunol

The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Published: November 2021

Type 1 diabetes (T1D) is characterized by the unresolved autoimmune inflammation and islet β cell destruction. The islet resident antigen-presenting cells (APCs) including dendritic cells and macrophages uptake and process the β cell-derived antigens to prime the autoreactive diabetogenic T cells. Upon activation, those autoreactive T cells produce copious amount of IFN-γ, TNF-α and IL-1β to induce β cell stress and death. Autoimmune attack and β cell damage intertwine together to push forward this self-destructive program, leading to T1D onset. However, β cells are far beyond a passive participant during the course of T1D development. Herein in this review, we summarized how β cells are actively involved in the initiation of autoimmune responses in T1D setting. Specifically, β cells produce modified neoantigens under stressed condition, which is coupled with upregulated expression of MHC I/II and co-stimulatory molecules as well as other immune modules, that are essential properties normally exhibited by the professional APCs. At the cellular level, this subset of APC-like β cells dynamically interacts with plasmacytoid dendritic cells (pDCs) and manifests potency to activate autoreactive CD4 and CD8 T cells, by which β cells initiate early autoimmune responses predisposing to T1D development. Overall, the antigen-presenting function of β cells helps to explain the tissue specificity of T1D and highlights the active roles of structural cells played in the pathogenesis of various immune related disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318689PMC
http://dx.doi.org/10.3389/fimmu.2021.690783DOI Listing

Publication Analysis

Top Keywords

cells
14
antigen-presenting function
8
function cells
8
dendritic cells
8
cells produce
8
t1d development
8
autoimmune responses
8
t1d
7
revisiting antigen-presenting
4
cells t1d
4

Similar Publications

A series of Dehydroabietylamine (DHAA) C-ring Schiff derivatives, L3-L20, were synthesized and their in vitro cytotoxic activity against the human tumor cell lines cervix HeLa, breast MCF-7, lung A549, liver HepG2, and the nonmalignant cell line umbilical vein HUVEC was investigated. Most of the compounds showed varying degrees of anticancer activity against HeLa cell lines while demonstrating lower toxicity to normal HUVEC cells compared to DHAA and doxorubicin (DOX), especially compound L19, which not only enhanced the anticancer activity of DHAA, but also significantly reduced the toxicity to normal cells, achieving a selectivity index (SI) 118 times higher than that of DHAA and 245 times higher than that of DOX. In addition, compound L19 induced apoptosis in HeLa cells in a dose-dependent manner and arrested the cell cycle in S phase.

View Article and Find Full Text PDF

Human PBMC-based humanized mice exhibit myositis features and serve as a drug evaluation model.

Inflamm Regen

January 2025

Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.

Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.

View Article and Find Full Text PDF

Background: Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy.

Methods: Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64.

View Article and Find Full Text PDF

Background: Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule.

Methods: To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets.

View Article and Find Full Text PDF

Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!