Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Smartphones are particularly likely to elicit driver distraction with obvious negative repercussions on road safety. Recent selective attention models lead to expect that smartphones might be very effective in capturing attention due to their social reward history. Hence, individual differences in terms of Fear of Missing Out (FoMO) - i.e., of the apprehension of missing out on socially rewarding experiences - should play an important role in driver distraction. This factor has already been associated with self-reported estimations of greater attention paid to smartphones while driving, but the potential link between FoMO and smartphone-induced distraction has never been tested empirically. Therefore, we conducted a preliminary study to investigate whether FoMO would modulate attentional capture by reward distractors displayed on a smartphone. First, participants performed a classical visual search task in which neutral stimuli (colored circles) were associated with high or low social reward outcomes. Then, they had to detect a pedestrian or a roe deer in driving scenes with various levels of fog density. The social reward stimuli were displayed as distractors on the screen of a smartphone embedded in the pictures. The results showed a significant three-way interaction between FoMO, social reward distraction, and task difficulty. More precisely, under attention-demanding conditions (i.e., high-fog density), individual FoMO scores predicted attentional capture by social reward distractors, with longer reaction times (RTs) for high rather than low social reward distractors. These results highlight the importance to consider reward history and FoMO when investigating smartphone-based distraction. Limitations are discussed, notably regarding our sample characteristics (i.e., mainly young females) that might hamper the generalization of our findings to the overall population. Future research directions are provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322628 | PMC |
http://dx.doi.org/10.3389/fpsyg.2021.688157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!