Patients who have lost limb control ability, such as upper limb amputation and high paraplegia, are usually unable to take care of themselves. Establishing a natural, stable, and comfortable human-computer interface (HCI) for controlling rehabilitation assistance robots and other controllable equipments will solve a lot of their troubles. In this study, a complete limbs-free face-computer interface (FCI) framework based on facial electromyography (fEMG) including offline analysis and online control of mechanical equipments was proposed. Six facial movements related to eyebrows, eyes, and mouth were used in this FCI. In the offline stage, 12 models, eight types of features, and three different feature combination methods for model inputing were studied and compared in detail. In the online stage, four well-designed sessions were introduced to control a robotic arm to complete drinking water task in three ways (by touch screen, by fEMG with and without audio feedback) for verification and performance comparison of proposed FCI framework. Three features and one model with an average offline recognition accuracy of 95.3%, a maximum of 98.8%, and a minimum of 91.4% were selected for use in online scenarios. In contrast, the way with audio feedback performed better than that without audio feedback. All subjects completed the drinking task in a few minutes with FCI. The average and smallest time difference between touch screen and fEMG under audio feedback were only 1.24 and 0.37 min, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322851 | PMC |
http://dx.doi.org/10.3389/fnbot.2021.692562 | DOI Listing |
JMIR Res Protoc
January 2025
College of Nursing, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
Background: TheKeep.Ca was built to facilitate engagement with those experiencing cancer in Manitoba, Canada. Constructed between 2020 and 2024 with a group of patient advisors, the website includes information on engagement activities including research participation, the patient advisor role, and how those experiencing cancer can access these Manitoba activities.
View Article and Find Full Text PDFJ Speech Lang Hear Res
January 2025
Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China.
Purpose: Neurotypical individuals show a robust "global precedence effect (GPE)" when processing hierarchically structured visual information. However, the auditory domain remains understudied. The current research serves to fill the knowledge gap on auditory global-local processing across the broader autism phenotype under the tonal language background.
View Article and Find Full Text PDFBMJ Qual Saf
January 2025
Medical Services and Techniques, Health Services Vocational School, Marmara Üniversitesi, Istanbul, Turkey.
Background: Natural hazards, such as earthquakes, pose a significant risk to both the public and healthcare professionals, jeopardising patient safety due to the disruption of healthcare systems and services. This study aimed to explore the lived experiences of healthcare professionals concerning patient safety during natural hazards, specifically earthquakes.
Methods: Employing a descriptive phenomenological approach, the study followed the Consolidated Criteria for Reporting Qualitative Research guidelines.
Burns
January 2025
St. Andrew's Centre for Plastic Surgery and Burns, Mid and South Essex NHS Foundation Trust, Chelmsford CM1 7E, UK; St. Andrew's Anglia Ruskin Research (StAAR) Group, Anglia Ruskin University, Chelmsford, UK.
Introduction: Scalds account for 40 % of burn injuries in developed countries, with a subset occurring during caregiving activities, particularly when gloves are worn. Gloves, a standard precaution against infection and body fluid exposure, may impair sensory feedback critical for detecting temperature changes, potentially increasing the risk of burns during personal care tasks.
Methods: This study investigated the impact of glove use on heat perception.
J Neurosci
January 2025
Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA.
Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!