Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deficiency of otoferlin causes profound prelingual deafness in humans and animal models. Here, we closely analyzed developmental deficits and degenerative mechanisms in knock-out ( ) mice over the course of 48 weeks. We found otoferlin to be required for proper synapse development in the immature rodent cochlea: In absence of otoferlin, synaptic pruning was delayed, and postsynaptic boutons appeared enlarged at 2 weeks of age. At postnatal day 14 (P14), we found on average ∼15 synapses per inner hair cell (IHC) in cochleae as well as in wild-type controls. Further on, the number of synapses in IHCs was reduced to ∼7 at 8 weeks of age and to ∼6 at 48 weeks of age. In the same period, the number of spiral ganglion neurons (SGNs) declined in animals. Importantly, we found an age-progressive loss of IHCs to an overall number of 75% of wildtype IHCs. The IHC loss more prominently but not exclusively affected the basal aspects of the cochlea. For outer hair cells (OHCs), we observed slightly accelerated age-dependent degeneration from base to apex. This was associated with a progressive decay in DPOAE amplitudes for high frequency stimuli, which could first be observed at the age of 24 weeks in mice. Our data will help to plan and predict the outcome of a gene therapy applied at various ages of DFNB9 patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316924 | PMC |
http://dx.doi.org/10.3389/fncel.2021.677543 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!