A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational modelling of an aerosol extraction device for use in COVID-19 surgical tracheotomy. | LitMetric

In view of the ongoing COVID-19 pandemic and its effects on global health, understanding and accurately modelling the propagation of human biological aerosols has become crucial. Worldwide, health professionals have been one of the most affected demographics, representing approximately 20% of all cases in Spain, 10% in Italy and 4% in China and US. Methods to contain and remove potentially infected aerosols during Aerosol Generating Procedures (AGPs) near source offer advantages in reducing the contamination of protective clothing and the surrounding theatre equipment and space. In this work we describe the application of computational fluid dynamics in assessing the performance of a prototype extraction hood as a means to contain a high speed aerosol jet. Whilst the particular prototype device is intended to be used during tracheotomies, which are increasingly common in the wake of COVID-19, the underlying physics can be adapted to design similar machines for other AGPs. Computational modelling aspect of this study was largely carried out by Barcelona Supercomputing Center using the high performance computational mechanics code Alya. Based on the high fidelity LES coupled with Lagrangian frameworks the results demonstrate high containment efficiency of generated particles is feasible with achievable air extraction rates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8314856PMC
http://dx.doi.org/10.1016/j.jaerosci.2021.105848DOI Listing

Publication Analysis

Top Keywords

computational modelling
8
computational
4
modelling aerosol
4
aerosol extraction
4
extraction device
4
device covid-19
4
covid-19 surgical
4
surgical tracheotomy
4
tracheotomy view
4
view ongoing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!