A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Naive Bayes Prediction of the Development of Cardiac Events in Heart Failure With Preserved Ejection Fraction in an Outpatient Clinic - Beyond B-Type Natriuretic Peptide. | LitMetric

Background: The heterogeneity of B-type natriuretic peptide (BNP) levels among individuals with heart failure and preserved ejection fraction (HFpEF) makes predicting the development of cardiac events difficult. This study aimed at creating high-performance Naive Bayes (NB) classifiers, beyond BNP, to predict the development of cardiac events over a 3-year period in individual outpatients with HFpEF.

Methods and results: We retrospectively enrolled 234 outpatients with HFpEF who were followed up for 3 years. Parameters with a coefficient of association ≥0.1 for cardiac events were applied as features of classifiers. We used the step forward method to find a high-performance model with the maximum area under the receiver operating characteristics curve (AUC). A 10-fold cross-validation method was used to validate the generalization performance of the classifiers. The mean kappa statistics, AUC, sensitivity, specificity, and accuracy were evaluated and compared between classifiers learning multiple factors and only the BNP. Kappa statistics, AUC, and sensitivity were significantly higher for NB classifiers learning 13 features than for those learning only BNP (0.69±0.14 vs. 0.54±0.12 P=0.024, 0.94±0.03 vs. 0.84±0.05 P<0.001, 85±8% vs. 64±20% P=0.006, respectively). The specificity and accuracy were similar.

Conclusions: We created high-performance NB classifiers for predicting the development of cardiac events in individual outpatients with HFpEF. Our NB classifiers may be useful for providing precision medicine for these patients.

Download full-text PDF

Source
http://dx.doi.org/10.1253/circj.CJ-21-0131DOI Listing

Publication Analysis

Top Keywords

cardiac events
16
development cardiac
12
naive bayes
8
heart failure
8
failure preserved
8
preserved ejection
8
ejection fraction
8
b-type natriuretic
8
natriuretic peptide
8
kappa statistics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!