The irradiation of halogen-bonded complexes with light leads to the homolysis of carbon-halogen bonds and the formation of the corresponding carbon radical species. However, the only methodology reported for these halogen-bonding complexes is using CBr as the halogen-bond donor and its applicability is of great interest. In this study, the atom transfer radical addition (ATRA) reaction of olefins using bromomalonates as halogen-bonding donors was developed. Using 4-phenylpyridine as the halogen-bonding acceptor, the desired reaction proceeded well under external irradiation of 380 nm light to furnish the corresponding ATRA reaction product. The ATRA reaction was effective in generating the corresponding products for a variety of olefins. Furthermore, the ATRA reaction was applicable to bulky ketones, substrates, and malonate esters. The intermediates of the reaction were identified and a plausible reaction mechanism was proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.c21-00360DOI Listing

Publication Analysis

Top Keywords

atra reaction
16
atom transfer
8
transfer radical
8
radical addition
8
reaction
8
reaction olefins
8
photoinduced atom
4
addition reaction
4
olefins α-bromo
4
α-bromo carbonyls
4

Similar Publications

Red-light absorbing photoredox catalysts offer potential advantages for large-scale reactions, expanding the range of usable substrates and facilitating bio-orthogonal applications. While many red-light absorbing/emitting fluorophores have been developed recently, functional red-light absorbing photoredox catalysts are scarce. Many photoredox catalysts rely on long-lived triplet excited states (triplets), which can efficiently engage in single electron transfer (SET) reactions with substrates.

View Article and Find Full Text PDF

Cleft palate is the most prevalent congenital condition. Cleft palate is brought on by an exogenous chemical called all-trans retinoic acid (atRA). In order to indirectly control gene expression, long chain non-coding RNAs (lncRNAs) act as competitive endogenous RNA (ceRNA) sponges.

View Article and Find Full Text PDF

We disclose a broad platform for copper-catalyzed atom transfer radical addition (ATRA) of electron-deficient olefins. Catalytic Cu(dtbbpy)(OTf) enables radical addition of electron-deficient alkyl halides to acrylates, acrylamides, and vinyl sulfones in fair to excellent yields. The resultant ATRA products can be used in a variety of telescoped reactions, including substitution with basic amine nucleophiles to afford α-amino esters.

View Article and Find Full Text PDF
Article Synopsis
  • π-Extended BODIPY compounds are effective fluorophores emitting in the red or near-infrared range, making them useful for various scientific applications like materials science and biomedical imaging.
  • The study investigates dibenzo-fused BODIPY as a red photoredox catalyst by adding an electron donor group, focusing on the synthesis and photophysical properties of different donor-acceptor configurations.
  • Research reveals how structural changes, specifically methyl groups and bridge length, influence the rates of photoinduced electron transfer, ultimately impacting their effectiveness in reactions like atom transfer radical addition.
View Article and Find Full Text PDF

We herein report a rare case of acute myeloid leukemia (AML) with t(11;12)(p15;q13) and NUP98::RARG, which seems to be involved in the development of AML. The morphological features were similar to those of classic acute promyelocytic leukemia (APL), but unlike classic APL, this leukemia was resistant to treatment with all-trans retinoic acid (ATRA). We decided to use standard chemotherapy for AML with monitoring of minimal residual disease (MRD) by qualitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for NUP98::RARG mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!