Nowadays, carbon nanotubes (CNTs) due to their inorganic conducting, semiconducting, and organic π-π stacking properties are becoming innovative materials. CNTs have an adjustable size, large surface area, and other significant chemical properties. Due to their excellent electrical, optical, and mechanical properties, CNTs play an important role in various application fields. In the past decade, many unique intrinsic physical and chemical properties have been intensively explored for pharmaceutical, biological, and biomedical applications. The functionalization of CNTs results in a remarkably reduced cytotoxicity and at the same time increased biocompatibility. The toxicity studies reveal that highly water-soluble and serum stable nanotubes are biocompatible, nontoxic, and potentially useful for biomedical applications. Ultrasensitive drug determination from its dosage form and/or biological samples with carbon nanotubes can be realized after surface modification. The main purpose of this review is to present recent achievements on CNTs which are investigated in electrochemical and chromatographically sensing technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408347.2021.1958296 | DOI Listing |
ACS Appl Bio Mater
January 2025
College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.
Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.
View Article and Find Full Text PDFNano Lett
January 2025
Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance of Research and Technology, 1 CREATE Way, #03-06, Singapore 138602, Singapore.
Fluorescent nanosensors operating have shown recent success toward informing basic plant biology and agricultural applications. We developed near-infrared (NIR) fluorescent nanosensors using the Corona Phase Molecular Recognition (CoPhMoRe) technique that distinguish Fe(II) and Fe(III) species with limit of detection as low as 10 nM. An anionic poly(p-phenyleneethynylene) (PPE) polyelectrolyte wrapped single-walled carbon nanotube (SWNT) shows up to 200% turn-on and 85% turn-off responses to Fe(II) and Fe(III), respectively, allowing spatial and temporal analysis of iron uptake in both foliar and root-to-shoot pathways.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Physics Postgraduate Program, Institute of Physics, University of Brasília, 70910-900 Brasília-DF, Brazil.
Two-dimensional (2D) nanomaterials are at the forefront of potential technological advancements. Carbon-based materials have been extensively studied since synthesizing graphene, which revealed properties of great interest for novel applications across diverse scientific and technological domains. New carbon allotropes continue to be explored theoretically, with several successful synthesis processes for carbon-based materials recently achieved.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
Arsenic (As) contamination in groundwater has become a global concern, and it poses a serious threat to the health of millions of people. Groundwater with high As concentrations has been reported worldwide. It is widely recognized that the toxicity of As largely depends on its chemical forms, making As speciation a critical issue.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University 197 Inje-ro Gimhae Gyeongnam-do 50834 Republic of Korea
Recently, lithium-sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g). However, to enhance the practical usability of Li-S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, LiS , 4 ≤ ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li-sulfur batteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!