A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cardiorespiratory fitness in children with overweight/obesity: Insights into the molecular mechanisms. | LitMetric

Cardiorespiratory fitness in children with overweight/obesity: Insights into the molecular mechanisms.

Scand J Med Sci Sports

Department of Physical and Sports Education, Faculty of Sport Sciences, PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS, University of Granada, Granada, Spain.

Published: November 2021

Objectives: High cardiorespiratory fitness (CRF) levels reduce the risk of developing cardiovascular disease (CVD) during adulthood. However, little is known about the molecular mechanisms underlying the health benefits of high CRF levels at the early stage of life. This study aimed to analyze the whole-blood transcriptome profile of fit children with overweight/obesity (OW/OB) compared to unfit children with OW/OB.

Design: 27 children with OW/OB (10.14 ± 1.3 years, 59% boys) from the ActiveBrains project were evaluated. VO peak was assessed using a gas analyzer, and participants were categorized into fit or unfit according to the CVD risk-related cut-points. Whole-blood transcriptome profile (RNA sequencing) was analyzed. Differential gene expression analysis was performed using the limma R/Bioconductor software package (analyses adjusted by sex and maturational status), and pathways' enrichment analysis was performed with DAVID. In addition, in silico validation data mining was performed using the PHENOPEDIA database.

Results: 256 genes were differentially expressed in fit children with OW/OB compared to unfit children with OW/OB after adjusting by sex and maturational status (FDR < 0.05). Enriched pathway analysis identified gene pathways related to inflammation (eg, dopaminergic and GABAergic synapse pathways). Interestingly, in silico validation data mining detected a set of the differentially expressed genes to be related to CVD, metabolic syndrome, hypertension, inflammation, and asthma.

Conclusion: The distinct pattern of whole-blood gene expression in fit children with OW/OB reveals genes and gene pathways that might play a role in reducing CVD risk factors later in life.

Download full-text PDF

Source
http://dx.doi.org/10.1111/sms.14028DOI Listing

Publication Analysis

Top Keywords

children ow/ob
16
fit children
12
cardiorespiratory fitness
8
children overweight/obesity
8
molecular mechanisms
8
crf levels
8
whole-blood transcriptome
8
transcriptome profile
8
ow/ob compared
8
compared unfit
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!