New Findings: What is the central question of this study? What is the impact of stress-induced premature senescence on skeletal muscle myoblast-derived extracellular vesicles (EVs) and myoblast-endothelial cell crosstalk? What is the main finding and its importance? Hydrogen peroxide treatment of human myoblasts induced stress-induced premature senescence (SIPS) and increased the release of exosome-sized EVs (30-150 nm in size) five-fold compared to untreated controls. Treatment of SIPS myoblast-derived EVs on endothelial cells increased senescence markers and decreased proliferation. Gene expression analysis of SIPS myoblast-derived EVs revealed a four-fold increase in senescence factor transforming growth factor-β. These results highlight potential mechanisms by which senescence imparts deleterious effects on the cellular microenvironment.
Abstract: Cellular senescence contributes to numerous diseases through the release of pro-inflammatory factors as part of the senescence-associated secretory phenotype (SASP). In skeletal muscle, resident muscle progenitor cells (satellite cells) express markers of senescence with advancing age and in response to various pathologies, which contributes to reduced regenerative capacities in vitro. Satellite cells regulate their microenvironment in part through the release of extracellular vesicles (EVs), but the effect of senescence on EV signaling is unknown. Primary human myoblasts were isolated following biopsies of the vastus lateralis from young healthy subjects. Hydrogen peroxide (H O ) treatment was used to achieve stress-induced premature senescence (SIPS) of myoblasts. EVs secreted by myoblasts with and without H O treatment were isolated, analysed and used to treat human umbilical vein endothelial cells (HUVECs) to assess senescence and angiogenic impact. H O treatment of primary human myoblasts in vitro increased markers of senescence (β-galactosidase and p21 ), decreased proliferation and increased exosome-like EV (30-150 nm) release approximately five-fold. In HUVECs, EV treatment from H O -treated myoblasts increased markers of senescence (β-galactosidase and transforming growth factor β), decreased proliferation and impaired HUVEC tube formation. Analysis of H O -treated myoblast-derived EV mRNA revealed a nearly four-fold increase in transforming growth factor β expression. Our novel results highlight the impact of SIPS on myoblast communication and identify a VasoMyo Crosstalk by which SIPS myoblast-derived EVs impair endothelial cell function in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/EP089423 | DOI Listing |
J Cancer Res Ther
December 2024
Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.
Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive.
Methods: We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC.
J Cancer Res Ther
December 2024
Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.
Mesenchymal stem cells (MSCs) are a class of protocells that can differentiate into various cell types and have robust replication and renewal capabilities. MSCs secrete various nutritional factors to regulate the microenvironment of tumor tissues. The mechanism by which they inhibit or promote tumor growth may be closely related to MSC-derived exosomes (MSC-Exo).
View Article and Find Full Text PDFThe therapeutic potential of extracellular vesicles (EVs) in bone regeneration is noteworthy; however, their clinical application is impeded by low yield and limited efficacy. This study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on the therapeutic efficacy of EVs derived from periodontal ligament stem cells (PDLSCs) and preliminarily explored its mechanism. PDLSCs were cultured with osteogenic media and stimulated with or without LIPUS, and then EVs and LIPUS-stimulated EVs (L-EVs) were isolated separately.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.
Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.
View Article and Find Full Text PDFVirulence
December 2025
Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
is a gram-negative pathogen that can cause multiple diseases including sepsis, urinary tract infections, and pneumonia. The escalating detections of hypervirulent and antibiotic-resistant isolates are giving rise to growing public concerns. Outer membrane vesicles (OMVs) are spherical vesicles containing bioactive substances including lipopolysaccharides, peptidoglycans, periplasmic and cytoplasmic proteins, and nucleic acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!