This multi-length scale anatomical study explores the influence of mild cartilage structural degeneration on the tissue swelling response. While the swelling response of cartilage has been studied extensively, this is the first study to reveal and correlate tissue microstructure and ultrastructure, with the swelling induced cartilage tissue strains. Cartilage sample strips (n = 30) were obtained from the distal-lateral quadrant of thirty mildly degenerate bovine patellae and, following excision from the bone, the cartilage strips were allowed to swell freely for 2 h in solutions of physiological saline and distilled water successively. The swelling response of this group of samples were compared with that of healthy cartilage, with (n = 20) and without the surface layer (n = 20). The subsequent curling response of cartilage showed that in healthy tissue it was highly variable, and with the surface removed some samples curved in the opposite direction, while in the mildly degenerate tissue group, virtually all tissue strips curved in a consistent upward manner. A significant difference in strain was observed between healthy samples with surface layer removed and mildly degenerate samples, illustrating how excision of the surface zone from pristine cartilage is insufficient to model the swelling response of tissue which has undergone natural degenerative changes. On average, total tissue thickness increased from 940 µm (healthy) to 1079 µm (mildly degenerate), however, looking at the zonal strata, surface and transition zone thicknesses both decreased while deep zone thickness increased from healthy to mildly degenerate tissue. Morphologically, changes to the surface zone integrity were correlated with a diminished surface layer which, at the ultrastructural scale, correlated with a decreased fibrillar density. Similarly, fibrosity of the general matrix visible at the microscale was associated with a loss of later interconnectivity resulting in large, aggregated fibril bundles. The microstructural and ultrastructural investigation revealed that the key differences influencing the tissue swelling strain response was (1) the thickness and extent of disruption to the surface layer and (2) the amount of fibrillar network destructuring, highlighting the importance of the collagen and tissue matrix structure in restraining cartilage swelling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655166PMC
http://dx.doi.org/10.1111/joa.13527DOI Listing

Publication Analysis

Top Keywords

swelling response
20
mildly degenerate
20
surface layer
16
tissue
12
tissue swelling
12
cartilage
9
cartilage tissue
8
swelling
8
response cartilage
8
surface
8

Similar Publications

Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.

View Article and Find Full Text PDF

A paediatric patient presented with periorbital oedema and fever. Initially, there was low suspicion for cavernous sinus thrombosis and orbital cellulitis due to the presence of full extraocular movements. However, given worsening bilateral periorbital oedema, lethargy and sepsis, neuroimaging was performed demonstrating inflammation and enhancement of the leptomeninges and left cavernous sinus, and raising concern for cavernous sinus thrombosis in the setting of orbital cellulitis.

View Article and Find Full Text PDF

The Anti-Neuroinflammatory Effects of Cepharanthine in Uric Acid-Induced Neuroinflammation.

J Ethnopharmacol

January 2025

Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province 050017, China.

Ethnopharmacological Relevance: Cepharanthine (CEP) is an alkaloid extracted from Stephania cephalantha Hayata, a traditional Chinese medicine (TCM) renowned for its heatclearing and dehumidifying properties. For centuries, Stephania cephalantha Hayata has been employed in the treatment of a wide range of diseases, including pain, edema, inflammation, and fever.

Aim Of The Study: Our research aims to investigate the role and mechanism of Cepharanthine in ameliorating uric acid (UA) induced neuroinflammatory responses.

View Article and Find Full Text PDF

Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.

View Article and Find Full Text PDF

Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!