Chinese kale is one of the most popular vegetables in southern China and Asia, but it has a short shelf-life. The effect of high oxygen atmospheric packaging (HOAP) treatment on the respiration rate as well as chlorophyll content and the expression of their metabolism-related genes of the soluble proteins in Chinese kale during storage were assessed. The results showed that Chinese kale subjected to HOAP treatment showed stimulated respiration rate and regulated expression of chlorophyll metabolism-related genes, such as BrChlases, BrPPH (pheophytin pheophorbide hydrolase), BrPAO (pheidea oxygenase gene), BrRCCR (red chlorophyll catabolite reductase), and BrSAG12 (senescence-associated gene), compared to the Chinese kale in the control. The activities of chlorophyll enzymes, that is, Chlase and Mg-dechelatase, were also influenced by HOAP treatment during storage. Furthermore, the total content of soluble proteins was stimulated to accumulate, and the intensity of protein bands, detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiling, increased in HOAP-treated samples. Based on the current results, as well as the results of our previous study regarding HOAP treatment of other vegetables, we speculate that HOAP may function by regulating the respiration rate and the accumulation of functional proteins, especially chlorophyll catabolic and antioxidant enzymes, to maintain the freshness of Chinese kale during storage. PRACTICAL APPLICATION: HOAP treatment could be a potential method for delaying quality changes and extending the shelf-life of Chinese kale after harvest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.15846 | DOI Listing |
Plants (Basel)
January 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China.
Background: Indole phytoalexins, plant-derived compounds present in cruciferous vegetables, have demonstrated anticancer properties. Brassinin (BSN), derived from Brassica campestris L. var.
View Article and Find Full Text PDFProtoplasma
January 2025
College of Horticulture, Shenyang Agricultural University, Shenhe District, 120 Dongling Road, Shenyang, China.
Microspore culture is an efficient and rapid method that produces doubled haploid (DH) lines for hybrid breeding in crops and vegetables. However, the low frequency of microspore embryogenesis and spontaneous diploidization in Chinese kale still require improvement. In the present work, an efficient microspore culture protocol was constructed and used for DH producing in Chinese kale breeding.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
School of Environment and Resource, Xichang University, Xichang, 615000, China.
The extensive mining of bastnasite (CeFCO) has caused severe pollution of lanthanum (La), cerium (Ce), and fluorine (F) in the surrounding farmland soil, threatening the safety of the soil-plant system. However, the stress effects of the interaction among these three elements on the tolerance and accumulation traits of Brassica chinensis L. (B.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Crop Science, Chungbuk National University, Cheongju-si, 28644, Republic of Korea.
Glyphosate (Gly) is a widely used herbicide for weed control in agriculture, but it can also adversely affect crops by impairing growth, reducing yield, and disrupting nutrient uptake, while inducing toxicity. Therefore, adopting integrated eco-friendly approaches and understanding the mechanisms of glyphosate tolerance in plants is crucial, as these areas remain underexplored. This study provides proteome insights into Si-mediated improvement of Gly-toxicity tolerance in Brassica napus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!