Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effects of succinic acid (SA) in fed-batch feeding mode on astaxanthin and lipids biopoduction of Haematococcus pluvialis against abiotic stresses were explored. By comparison with the control, the initial addition of SA on day 0 increased the production of astaxanthin by 71.61%. More importantly, the maximum values of astaxanthin (35.88 mg g) and lipid (54.79%) contents were obtained after supplementation of SA on day 7. Meanwhile, under SA treatment, the chlorophyll, carbohydrate, and protein levels were reduced, but the intracellular levels of SA and reactive oxygen species (ROS), the transcription levels of astaxanthin and fatty acids biosynthesis-, and antioxidant system-related genes were increased. Furthermore, scaling-up cultivation in bioreactor further enhanced the astaxanthin productivity from H. pluvialis. Generally, this study proved the intermittent SA feeding method in fed-batch culture as a potent strategy that facilitated massive astaxanthin and lipids production in algae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2021.125648 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!