Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cell signaling and the following gene regulation are tightly regulated to keep homeostasis. NF-κB is a famous key transcription factor for inflammatory cell regulations that obtain a closed feedback loop with IκB. Similarly, we show here, NFAT is also tightly regulated via its downstream target, down syndrome critical region (DSCR)-1. In primary cultured endothelium, either shear stress or VEGF treatment revealed quick NFAT1 nuclear localization following the DSCR-1 transactivation, which in turn induced NFAT1 cytoplasm sequestration. Interestingly, both NFAT and DSCR-1 can be competitive substrates for calcineurin phosphatase and DSCR-1 is known to unstable protein, which caused NFAT1-nucleocytoplasmic damped oscillation via sustained shear stress or VEGF stimulation in endothelial cell (EC)s. To understand the molecular mechanism underlying the NFAT1 oscillation, we built a mathematical model of spatiotemporal regulation of NFAT1 combined with calcineurin and DSCR-1. Theoretically, manipulation of DSCR-1 expression in simulation predicted that DSCR-1 reduction would cause nuclear retention of dephosphorylated NFAT1 and disappearance of NFAT1 oscillation. To confirm this in ECs, DSCR-1 knockdown analysis was performed. DSCR-1 reduction indeed increased dephosphorylated NFAT1 in both the nucleus and cytoplasm, which eventually led to nuclear retention of NFAT1. Taken together, these studies suggest that DSCR-1 is a responsible critical factor for NFAT1 nucleocytoplasmic oscillation in shear stress or VEGF treated ECs. Our mathematical model successfully reproduced the experimental observations of NFAT1 dynamics. Combined mathematical and experimental approaches would provide a quantitative understanding way for the spatiotemporal NFAT1 feedback system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2021.07.072 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!