The introduction of oxygen-defects has been a versatile strategy to enhance photocatalysis efficiency. In this work, a 2D/3D Bi/BiO/BiWO heterojunction photocatalyst with rich oxygen-defective was in sequence prepared through a facile solvothermal method, which displays favorable photocatalytic activity towards organic contaminants under visible-NIR light irradiation. The enhancement in photocatalytic performance can be attributed to the synergistic effect between oxygen-vacancy-rich heterojunction and the localized surface plasmon resonance induced by metallic Bi. The functional group interaction, surface morphology, crystal structure, element composition, and tuned bandgap were investigated by FT-IR, SEM, Raman shift, ICP-MS, and XPS technique. The spectrum response performance of the photocatalyst was verified by UV-visible DRS analysis. Results of photodegradation experiments toward organic contaminants showed that the prepared photocatalyst can degrade 90% of phenol in 20 mins under visible-NIR light irradiation, both Z-scheme heterojunction and the introduction of Bi metal contribute to the enhancement in the photocatalytic activity. The results of the DFT calculation suggest that the valence band-edge hybridization within BiO and BiWO can effectively enhance the photocatalytic performance by increasing the migration efficiencies of electron-hole pairs. Moreover, a possible mechanism was proposed on the results of EIS, ESR and GC-MS tests. This work offers a novel insight for synthesizing efficient visible-NIR light photocatalysis by activating the semiconductors with Bi metal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.06.085DOI Listing

Publication Analysis

Top Keywords

light irradiation
12
visible-nir light
12
photocatalytic activity
8
organic contaminants
8
enhancement photocatalytic
8
photocatalytic performance
8
oxygen vacancy
4
vacancy bio/biwo
4
bio/biwo synchronous
4
synchronous coupling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!