A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session33pghj7ec7l5f17usq5lqlt3bjjf11p5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. | LitMetric

AI Article Synopsis

  • Cervical cancer is a major health concern for women, but regular screening, especially through Pap smear tests, can help detect precancerous lesions early.
  • Traditional Pap smear screenings can lead to high false-positive rates due to human error, prompting the exploration of machine learning (ML) and deep learning (DL) methods for more accurate detection.
  • The study introduces DeepCervix, a hybrid deep feature fusion technique, achieving impressive classification accuracy on cervical cell datasets, including 99.85% for 2-class classification on the SIPaKMeD dataset.

Article Abstract

Cervical cancer, one of the most common fatal cancers among women, can be prevented by regular screening to detect any precancerous lesions at early stages and treat them. Pap smear test is a widely performed screening technique for early detection of cervical cancer, whereas this manual screening method suffers from high false-positive results because of human errors. To improve the manual screening practice, machine learning (ML) and deep learning (DL) based computer-aided diagnostic (CAD) systems have been investigated widely to classify cervical Pap cells. Most of the existing studies require pre-segmented images to obtain good classification results. In contrast, accurate cervical cell segmentation is challenging because of cell clustering. Some studies rely on handcrafted features, which cannot guarantee the classification stage's optimality. Moreover, DL provides poor performance for a multiclass classification task when there is an uneven distribution of data, which is prevalent in the cervical cell dataset. This investigation has addressed those limitations by proposing DeepCervix, a hybrid deep feature fusion (HDFF) technique based on DL, to classify the cervical cells accurately. Our proposed method uses various DL models to capture more potential information to enhance classification performance. Our proposed HDFF method is tested on the publicly available SIPaKMeD dataset and compared the performance with base DL models and the late fusion (LF) method. For the SIPaKMeD dataset, we have obtained the state-of-the-art classification accuracy of 99.85%, 99.38%, and 99.14% for 2-class, 3-class, and 5-class classification. This method is also tested on the Herlev dataset and achieves an accuracy of 98.32% for 2-class and 90.32% for 7-class classification. The source code of the DeepCervix model is available at: https://github.com/Mamunur-20/DeepCervix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104649DOI Listing

Publication Analysis

Top Keywords

classification
8
cervical cells
8
hybrid deep
8
deep feature
8
feature fusion
8
cervical cancer
8
manual screening
8
classify cervical
8
cervical cell
8
method tested
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!