A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adenosine synthase A contributes to recurrent Staphylococcus aureus infection by dampening protective immunity. | LitMetric

Adenosine synthase A contributes to recurrent Staphylococcus aureus infection by dampening protective immunity.

EBioMedicine

School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.

Published: August 2021

Background: Staphylococcus aureus is a common human pathogen capable of causing diverse illnesses with possible recurrent infections. Although recent studies have highlighted the role of cellular immunity in recurrent infections, the mechanism by which S. aureus evades host responses remains largely unexplored.

Methods: This study utilizes in vitro and in vivo infection experiments to investigate difference of pro-inflammatory responses and subsequent adaptive immune responses between adsA mutant and WT S. aureus strain infection.

Findings: We demonstrated that adenosine synthase A (AdsA), a potent S. aureus virulence factor, can alter Th17 responses by interfering with NLRP3 inflammasome-mediated IL-1β production. Specifically, S. aureus virulence factor AdsA dampens Th1/Th17 immunity by limiting the release of IL-1β and other Th polarizing cytokines. In particular, AdsA obstructs the release of IL-1β via the adenosine/A2aR/NLRP3 axis. Using a murine infection model, pharmacological inhibition of A2a receptor enhanced S. aureus-specific Th17 responses, whereas inhibition of NLRP3 and caspase-1 downregulated these responses. Our results showed that AdsA contributes to recurrent S. aureus infection by restraining protective Th1/Th17 responses.

Interpretation: Our study provides important mechanistic insights for therapeutic and vaccination strategies against S. aureus infections.

Funding: This work was supported by grants from Shenzhen Peacock project (KQTD2015033-117210153), and Guangdong Science and Technology Department (2020B1212030004) to J.H. and China Postdoctoral Science Foundation (2019M663167) to BZZ. We also thank the L & T Charitable Foundation, the Guangdong Science and Technology Department (2020B1212030004), and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019BT02Y198) for their support.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340124PMC
http://dx.doi.org/10.1016/j.ebiom.2021.103505DOI Listing

Publication Analysis

Top Keywords

adenosine synthase
8
contributes recurrent
8
aureus
8
staphylococcus aureus
8
aureus infection
8
recurrent infections
8
responses adsa
8
aureus virulence
8
virulence factor
8
th17 responses
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!