A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of serum and glucocorticoid regulated kinases by GSK650394 reduced infarct size in early cerebral ischemia-reperfusion with decreased BBB disruption. | LitMetric

Blood-brain barrier (BBB) disruption is one of the most important pathological changes following cerebral ischemia-reperfusion. We tested whether inhibition of the serum and glucocorticoid regulated kinase 1 (SGK1) would decrease BBB disruption and contribute to decreasing infarct size in the first few hours of cerebral ischemia-reperfusion within the thrombolysis therapy time window. After transient middle cerebral artery occlusion (MCAO), an SGK1 inhibitor GSK650394, or vehicle was administered into the lateral ventricle of rats. After one hour of MCAO and two hours of reperfusion, we determined BBB disruption using the transfer coefficient (K) of C-α-aminoisobutyric acid, and also determined infarct size, phosphorylation of NDRG1, and MMP2 protein level. Ischemia-reperfusion increased (+34%, p < 0.05) and GSK650394 decreased (-25%, p < 0.05) the K in the ischemic-reperfused cortex. GSK650394 decreased the percentage of cortical infarct (-31%, p < 0.001). At the same time GSK650394 reduced NDRG1 phosphorylation and MMP2 protein level in the ischemic-reperfused cortex suggesting that SGK1 was inhibited by GSK650394 and that lower MMP2 could be one of the mechanisms of decreased BBB disruption. Collectively our data suggest that GSK650394 could be neuroprotective and one of the mechanisms of the neuroprotection could be decreased BBB disruption. SGK1 inhibition within the thrombolysis therapy time window might reduce cerebral ischemia-reperfusion injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434992PMC
http://dx.doi.org/10.1016/j.neulet.2021.136143DOI Listing

Publication Analysis

Top Keywords

bbb disruption
16
infarct size
12
cerebral ischemia-reperfusion
12
inhibition serum
8
serum glucocorticoid
8
glucocorticoid regulated
8
regulated kinases
4
kinases gsk650394
4
gsk650394 reduced
4
reduced infarct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!