Copper metal-organic framework embedded carboxymethyl chitosan-g-glutathione/polyacrylamide hydrogels for killing bacteria and promoting wound healing.

Int J Biol Macromol

Institute of Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510275, PR China. Electronic address:

Published: September 2021

Bacterial infection and its induced oxidative stress as major clinical challenge during wound healing call for an urgent response for the development of medical dressings with multi-functions, such as antioxidant and antibacterial. To meet this demand, copper metal organic framework nanoparticles (HKUST NPs) and carboxymethyl chitosan-g-glutathione (CMCs-GSH) were synthesized and characterized. By embedding HKUST NPs into PAM/CMCs-GSH hydrogel (AOH), we developed a novel hydrogel dressing (HKUST-Hs) with dual effects of antibacterial and antioxidant. The morphology, swelling behavior, oxidation resistance and antibacterial properties of HKUST-Hs were investigated as well as the slow-release behavior of copper ions. Full-thickness cutaneous wound model of rats was created to assess the promoting effect of HKUST-Hs on wound healing. We found that HKUST NPs could be well dispersed in HKUST-Hs by shielding the positive charge of copper ions, and thus copper ions released were uniformly distributed and chelated with CMCs-GSH to promote the swelling stability of HKUST-Hs. Also, HKUST-Hs exhibited good free radical scavenging ability in vitro antioxidant assay. Meanwhile, a gradient sustained-release system of copper ions was formed in HKUST-Hs owing to the inhibition of HKUST NPs to copper release and the chelation of CMCs-GSH, which effectively inhibited the explosive release of copper ions and prolonged the release period, thereby reducing cytotoxicity. In vitro antibacterial test demonstrated there was synergistic antibacterial effect between the slow-released copper ions and CMCs-GSH, which improved the antibacterial activity and antibacterial persistence of HKUST-Hs. Finally, HKUST-Hs accelerated wound healing in vivo by continuously killing bacteria and inhibiting oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.07.139DOI Listing

Publication Analysis

Top Keywords

copper ions
24
wound healing
16
hkust nps
16
copper
9
hkust-hs
9
killing bacteria
8
oxidative stress
8
antibacterial
7
ions
6
wound
5

Similar Publications

The local structure plays a crucial role in oxygen redox reactions, which boosts the capacity of layered oxide cathodes for sodium-ion batteries. While studies on local structural ordering have primarily focused on the intra-layer ordering, there has been limited research on the inter-layer stacking for the layered cathode materials for sodium-ion batteries. In this work, the impact of the intra-layer and inter-layer local structural regulation on anionic kinetics and the structure stability are explored through experimental analysis and theoretical calculations.

View Article and Find Full Text PDF

Wet chemical sensors autonomously sample and analyze water using chemical assays. Their internal fluidics are not susceptible to biofouling (the undesirable accumulation of microorganisms, algae, and animals in natural waters) due to the harsh chemical environment and dark conditions; however, the sample intake and filter are potentially susceptible. This paper describes the use of copper intake filters, incorporated to prevent fouling, on two different wet chemical nitrate sensors that each use different variants of the Griess assay (in particular, different nitrate reduction steps) to quantify nitrate concentrations.

View Article and Find Full Text PDF

Background: In cuproptosis, excess copper ions induce cell death via fatty acylation in the tricarboxylic acid (TCA) cycle. However, the effects of cuproptosis-TCA-related long non-coding RNAs (lncRNAs) on the clinical prognosis of non-small cell lung cancer (NSCLC) and the associated tumor microenvironment remain unclear. The purpose of this study is to use cuproptosis-TCA related lncRNAs to predict the prognosis of NSCLC.

View Article and Find Full Text PDF

In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Biometallic ions and derivatives: a new direction for cancer immunotherapy.

Mol Cancer

January 2025

Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China.

Biometallic ions play a crucial role in regulating the immune system. In recent years, cancer immunotherapy has become a breakthrough in cancer treatment, achieving good efficacy in a wide range of cancers with its specificity and durability advantages. However, existing therapies still face challenges, such as immune tolerance and immune escape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!