Research status and future challenge for CO sequestration by mineral carbonation strategy using iron and steel slag.

Environ Sci Pollut Res Int

Department of Ferrous Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Published: September 2021

Mineral carbonation can simultaneously realize the effective treatment of CO and iron and steel slag; thus, it is of great significance for the low carbon and sustainable development of iron and steel industry. In this article, the researches of mineral carbonation process using iron and steel slag as feedstock are reviewed, and the carbonation reaction mechanism and the parameters affecting the reaction rate and carbonation degree are analyzed. Furthermore, the effect of different enforcement approaches, such as ultrasonic enhancement, mixed calcination, microbial enhancement, and cyclic coprocessing on mineral carbonation reaction, is introduced. The additional effects of mineral carbonation, such as solving the problem of poor volume stability of steel slag, weakening the leaching of heavy metal ions, and reducing the pH of the leachate, are also illustrated. Moreover, issues related to mineral carbonation technology that should be emphasized upon soon, such as the production of valuable products, use of industrial wastewater, aqueous phase recycling use, multiparameter coupling analysis, and research on the properties of carbonation residues, are also discussed, which contribute some perspectives to the future development of mineral carbonation of iron and steel slag.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-15254-xDOI Listing

Publication Analysis

Top Keywords

mineral carbonation
28
iron steel
20
steel slag
20
carbonation
10
carbonation reaction
8
mineral
7
steel
6
iron
5
slag
5
status future
4

Similar Publications

Due to the high cost of the available Pt electrocatalysts, the large-scale water electrolysis production of hydrogen has been hindered. Hydrogen generation via electrochemical water splitting is a renewable energy essential to a sustainable society, creating a distinct material interface that shows Pt-like properties with long-term stability crucial to hydrogen evolution reactions (HERs). Here, we synthesized the guanine-assisted facile synthesis of 1 wt % Pt/MoC/C having a layered type morphology via solid state calcined process followed by chemical reduction.

View Article and Find Full Text PDF

Degradation of antibiotic pollutants and simultaneous CO capture over hollow MnO/light/peroxymonosulfate (PMS)-CaO system.

J Colloid Interface Sci

January 2025

School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:

Antibiotic organic pollutants not only pose a significant threat to human health but also generate a large amount of carbon dioxide (CO) during the treatment process of advanced oxidation processes (AOPs). Herein, the antibiotics aqueous solution was firstly degraded and mineralized by light-assisted peroxymonosulfate (PMS) activation over hollow manganese dioxide (MnO) catalyst and then the corresponding released CO was effectively captured by calcium oxide (CaO) particles in the same sealed reactor, achieving wastewater treatment with zero carbon releasing. Under simulated light conditions, hollow MnO is excited to generate electron-hole pairs.

View Article and Find Full Text PDF

Bacterial activation level determines Cd(II) immobilization efficiency by calcium-phosphate minerals in soil.

J Hazard Mater

January 2025

National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:

Soil mineral properties significantly influence the mobility of Cd(II) within the soil matrix. However, the limited understanding of how microbial metabolism affects mineral structure at the microscale poses challenges for in situ remediation. Here, we designed a model calcium-phosphate system in a urea-rich environment to explore the impact of different microbial activation levels on Cd(II) fixation at mineral interfaces.

View Article and Find Full Text PDF

Ecological ditches serve as one of the important measures for the concentrated infiltration of stormwater in the construction process of sponge cities. Prolonged concentrated infiltration of stormwater can lead to the accumulation of pollutants and pollution risks in the substrate of ecological ditches. In this study, two different substrate ecological ditches were constructed, namely, a combined substrate ecological ditch with zeolite + ceramsite (EA), and a biological substrate ecological ditch (EB).

View Article and Find Full Text PDF

The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!