Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO reduction to formate.

Appl Microbiol Biotechnol

Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany.

Published: August 2021

In times of global climate change and the fear of dwindling resources, we are facing different considerable challenges such as the replacement of fossil fuel-based energy carriers with the coincident maintenance of the increasing energy supply of our growing world population. Therefore, CO capturing and H storing solutions are urgently needed. In this study, we demonstrate the production of a functional and biotechnological interesting enzyme complex from acetogenic bacteria, the hydrogen-dependent CO reductase (HDCR), in the well-known model organism Escherichia coli. We identified the metabolic bottlenecks of the host organisms for the production of the HDCR enzyme complex. Here we show that the recombinant expression of a heterologous enzyme complex transforms E. coli into a whole-cell biocatalyst for hydrogen-driven CO reduction to formate without the need of any external co-factors or endogenous enzymes in the reaction process. This shifts the industrial platform organism E. coli more and more into the focus as biocatalyst for CO-capturing and H-storage. KEY POINTS: • A functional HDCR enzyme complex was heterologously produced in E. coli. • The metabolic bottlenecks for HDCR production were identified. • HDCR enabled E. coli cell to capture and store H and CO in the form of formate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390402PMC
http://dx.doi.org/10.1007/s00253-021-11463-zDOI Listing

Publication Analysis

Top Keywords

enzyme complex
16
reduction formate
8
metabolic bottlenecks
8
hdcr enzyme
8
coli
5
hdcr
5
capture carbon
4
carbon dioxide
4
dioxide hydrogen
4
hydrogen engineered
4

Similar Publications

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Background: Nonalcoholic fatty liver disease (NAFLD) has developed as a leading public wellness challenge as a result of changes in dietary patterns. Unfortunately, there is still a lack of effective pharmacotherapy methods for NAFLD. Wang's empirical formula (WSF) has demonstrated considerable clinical efficacy in treating metabolic disorders for years.

View Article and Find Full Text PDF

Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.

View Article and Find Full Text PDF

The present research work is concerned with the production and optimization of the dopa-oxidase enzyme by using pre-grown mycelia of Aspergillus oryzae. Different strains of A. oryzae were collected and isolated from various soil samples.

View Article and Find Full Text PDF

The Anopheles maculipennis complex consists of several mosquito species, including some primary malaria vectors. Therefore, the presence of a species in a particular area significantly affects public health. In this study, 1252 mosquitoes were collected in northern Italy, representing four identified species of the Anopheles maculipennis complex (Anopheles daciae sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!