Leiarius marmoratus, a freshwater catfish from Pimelodidae family, shows great biological and commercial relevance because of its geographic distribution and adaptation to fish-farm. The knowledge of the morphological characteristics of the digestive tract is fundamental to the understanding of fish physiology and nutrition, which helps in the planning of diets to provide better management and success in fish farming. Thus, this work described the morphology and histochemistry of the digestive tract of L. marmoratus adults. After euthanasia, the animals were dissected for analysis of the digestive tract. The oesophagus is a short and distensive organ with longitudinal folds that allow the passage of large food, e.g., other fishes. Oesophageal mucosa layer shows a stratified epithelium with goblet cells and club cells. The secretion of goblet cells is composed of neutral and acidic mucins that are anchored in the epithelium luminal face by epithelial cells fingerprint-like microridges, lubricating the surface to facilitate the food sliding. Club cells have protein secretion that can be involved in alarm signals when epithelium is damaged and in immunological defence. The saccular stomach is highly distensible to store large food. Gastric mucosa layer is composed of epithelial cells with intense secretion of neutral mucin to protect against self-digestion of gastric juice. Cardiac and fundic regions of stomach show well-developed gastric glands composed of oxynticopeptic cells. These cells have numerous mitochondria, highlighting their intense activity in the synthesis of acid and enzymes. The intestine is divided into three regions: anterior, middle and posterior. Although it is a short tube, intestine shows longitudinal folds and microvilli of enterocytes to increase the contact surface. These folds are higher in the anterior region of the intestine, highlighting their function in digestion and absorption. Intestinal goblet cells have acidic and neutral mucins that lubricate the epithelium and aid in digestive processes. These cells increase in number towards aboral, and they are related to the protection and lubrication to expulsion of faecal bolus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfb.14868 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!