Arsenic in groundwater constitutes an agronomic problem due to its potential accumulation in the food chain. Among the agro-sustainable tools to reduce metal(oid)s toxicity, the use of plant growth-promoting bacteria (PGPB) becomes important. For that, and based on previous results in which significant differences of As translocation were observed when inoculating maize plants with Az39 or CD Azospirillum strains, we decided to decipher the redox metabolism changes and the antioxidant system response of maize plants inoculated when exposed to a realistic arsenate (As ) dose. Results showed that As caused morphological changes in the root exodermis. Photosynthetic pigments decreased only in CD inoculated plants, while oxidative stress evidence was detected throughout the plant, regardless of the assayed strain. The antioxidant response was strain-differential since only CD inoculated plants showed an increase in superoxide dismutase, glutathione S-transferase (GST), and glutathione reductase (GR) activities while other enzymes showed the same behavior irrespective of the inoculated strain. Gene expression assays reported that only GST23 transcript level was upregulated by arsenate, regardless of the inoculated strain. As diminished the glutathione (GSH) content of roots inoculated with the Az39 strain, and CD inoculated plants showed a decrease of oxidized GSH (GSSG) levels. We suggest a model in which the antioxidant response of the maize-diazotrophs system is modulated by the strain and that GSH plays a central role acting mainly as a substrate for GST. These findings generate knowledge for a suitable PGPB selection, and its scaling to an effective bioinoculant formulation for maize crops exposed to adverse environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13514 | DOI Listing |
Plants (Basel)
January 2025
Departamento de Agronomía, Edificio Celestino Mutis (C-4), Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain.
Iron (Fe) deficiency is among the most important agronomical concerns under alkaline conditions. Bicarbonate is considered an important factor causing Fe deficiency in dicot plants, mainly on calcareous soils. Current production systems are based on the use of high-yielding varieties and the application of large quantities of agrochemicals, which can cause major environmental problems.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile.
In Chile and worldwide, walnut () production faces significant losses due to crown and root rot caused by the phytopathogen . Currently, control methods have proven insufficient or unfavorable for the environment, increasing the need for sustainable alternatives. This research evaluates nanoemulsions based on extracts of medicinal plants endemic to Chile to control in walnut crops.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain.
L. (cotton-lavender) is receiving increasing attention due to its potential for modern medicine and is considered both a functional food and nutraceutical. In this work, the phytochemical profile of its flower hydromethanolic extract was investigated by gas chromatography-mass spectrometry, and its applications as a biorational for crop protection were explored against spp.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Agricultural Zoology and Entomology, Department of Science of Crop Production, Agricultural University of Athens, 11855 Athens, Greece.
The most common and damaging plant parasitic nematodes are root-knot nematodes (RNK). Although hemp has been clearly infected by RNK, little information is available regarding the extent of the damage and losses caused. In addition, no information is available concerning hemp seed extracts' activity against RNK.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!