Deciphering protein-protein interactions (PPIs) in vivo is crucial to understand protein function. Bimolecular fluorescence complementation (BiFC) makes applicable the analysis of PPIs in many different native contexts, including human live cells. It relies on the property of monomeric fluorescent proteins to be reconstituted from two separate subfragments upon spatial proximity. Candidate partners fused to such complementary subfragments can form a fluorescent protein complex upon interaction, allowing visualization of weak and transient PPIs. It can also be applied for investigation of distinct PPIs at the same time using a multicolor setup. In this chapter, we provide a detailed protocol for analyzing PPIs by doing BiFC in cultured cells. Proof-of-principle experiments rely on the complementation property between the N-terminal fragment of mVenus (designated VN173) and the C-terminal fragment of mCerulean (designated CC155) and the partnership between HOXA7 and PBX1 proteins. This protocol is compatible with any other fluorescent complementation pair fragments and any type of candidate interacting proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1593-5_12 | DOI Listing |
Am J Stem Cells
December 2024
Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences Khorramabad, Iran.
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
Establishing the protein-protein interaction network sheds light on functional genomics studies by providing insights from known counterparts. However, the rice interactome has barely been studied due to the lack of massive, reliable, and cost-effective methodologies. Here, the development of a barcode-indexed PCR coupled with HiFi long-read sequencing pipeline (BIP-seq) is reported for high throughput Protein Protein Interaction (PPI)identification.
View Article and Find Full Text PDFJ Adv Res
January 2025
Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China. Electronic address:
Introduction: Sweetpotato (Ipomoea batatas (L.) Lam.) is a genetically intricate hexaploid crop.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.
Background: Sucrose non-fermenting-1-related protein kinases (SnRKs) have been implicated in plant growth and stress responses. Although SnRK3.23 is known to be involved in drought stress, the underlying mechanism of resistance differs between Arabidopsis and rice, and little is known about its function in wheat.
View Article and Find Full Text PDFAutophagy
January 2025
Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
Although the relationship between macroautophagy/autophagy and Alzheimer disease (AD) is widely studied, the underlying mechanisms are poorly understood, especially the regulatory role of the initiation signaling of autophagy on AD. Here, we find that the ER transmembrane protein CANX (calnexin) is a novel interaction partner of the autophagy-inducing kinase ULK1 and is required for ULK1 recruitment to the ER under basal or starved conditions. Loss of CANX results in the inactivity of ULK1 kinase and inhibits autophagy flux.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!