Hydrogen-grain-boundaries interactions and their role in intergranular fracture are well accepted as one of the key features in understanding hydrogen embrittlement in a large variety of common engineer situations. These interactions implicate some fundamental processes classified as segregation, trapping and diffusion of the solute which can be studied as a function of grain boundary configuration. In the present study, we carried out an extensive analysis of four grain-boundaries based on the complementary of atomistic calculations and experimental data. We demonstrate that elastic deformation has an important contribution on the segregation energy which cannot be simply reduced to a volume change and need to consider the deviatoric part of strain. Additionally, some significant configurations of the segregation energy depend on the long-range elastic distortion and allows to rationalize the elastic contribution in three terms. By investigating the different energy barriers involved to reach all the segregation sites, the antagonist impact of grain boundaries on hydrogen diffusion and trapping process was elucidated. The segregation energy and migration energy are two fundamental parameters in order to classify the grain-boundaries as a trapping location or short circuit for diffusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324914 | PMC |
http://dx.doi.org/10.1038/s41598-021-94107-6 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Institute de Quimica Computacional i Catálisi, Universitat de Girona, Girona 17003 Spain.
Creating sustainable and stable semiconductors for energy conversion via catalysis, such as water splitting and carbon dioxide reduction, is a major challenge in modern materials chemistry, propelled by the limited and dwindling reserves of platinum group metals. Two-dimensional hexagonal borocarbonitride (h-BCN) is a metal-free alternative and ternary semiconductor, possessing tunable electronic properties between that of hexagonal boron nitride (h-BN) and graphene, and has attracted significant attention as a nonmetallic catalyst for a host of technologically relevant chemical reactions. Herein, we use density functional theory to investigate the stability and optoelectronic properties of phase-separated monolayer h-BCN structures, varying carbon concentration and domain size.
View Article and Find Full Text PDFHeliyon
January 2025
Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
Urbanization and population growth in India have quickened, leading to an annual generation of around 62 million tonnes of municipal solid waste (MSW). Improper management of organic waste presents a major environmental problem due to air and water pollution, soil contamination and greenhouse gas production. This research aims to develop refuse-derived fuel (RDF) as a viable option, converting waste into a high-calorific energy carrier for industrial use.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)45° missing row reconstruction (MRR).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!