Medulloblastoma is the most common malignant pediatric brain tumor and there is an urgent need for molecularly targeted and subgroup-specific therapies. The stem cell factor SOX9, has been proposed as a potential therapeutic target for the treatment of Sonic Hedgehog medulloblastoma (SHH-MB) subgroup tumors, given its role as a downstream target of Hedgehog signaling and in functionally promoting SHH-MB metastasis and treatment resistance. However, the functional requirement for SOX9 in the genesis of medulloblastoma remains to be determined. Here we report a previously undocumented level of SOX9 expression exclusively in proliferating granule cell precursors (GCP) of the postnatal mouse cerebellum, which function as the medulloblastoma-initiating cells of SHH-MBs. Wild-type GCPs express comparatively lower levels of SOX9 than neural stem cells and mature astroglia and SOX9 GCP-like tumor cells constitute the bulk of both infant (Math1Cre: ) and adult ( ) SHH-MB mouse models. Human medulloblastoma single-cell RNA data analyses reveal three distinct populations present in SHH-MB and noticeably absent in other medulloblastoma subgroups: (GCP), (astrocytes) and (potential tumor-derived astrocytes). To functionally address whether SOX9 is required as a downstream effector of Hedgehog signaling in medulloblastoma tumor cells, we ablated using a Math1Cre model system. Surprisingly, targeted ablation of in GCPs (Math1Cre: ) revealed no overt phenotype and loss of in SHH-MB (Math1Cre: ) does not affect tumor formation. IMPLICATIONS: Despite preclinical data indicating SOX9 plays a key role in SHH-MB biology, our data argue against SOX9 as a viable therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1541-7786.MCR-21-0117 | DOI Listing |
HGG Adv
January 2025
Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. Electronic address:
SOX9 encodes an SRY-related transcription factor critical for chondrogenesis and sex determination among other processes. Loss-of-function variants cause campomelic dysplasia and Pierre Robin Sequence, while both gain- and loss-of-function variants cause disorders of sex development. SOX9 has also been linked to scoliosis and cancers, but variants are undetermined.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia. Electronic address:
In mammals, male sexual development is initiated by the expression of the Sex-determining-Region-Y (SRY) gene. SRY contains a highly conserved High Mobility Group (HMG) box essential for DNA binding and activity. Variants in SRY cause Differences of Sex Development (DSD), accounting for 10-15% of 46,XY gonadal dysgenesis cases.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Anatomy and Cell Biology.
The oral mucosa undergoes daily insults, and stem cells in the epithelial basal cell layer regenerate gingiva tissue to maintain oral health. The Iroquois Homeobox 1 (IRX1) protein is expressed in the stem cell niches in human/mouse oral epithelium and mesenchyme under homeostasis. We found that Irx1+/- heterozygous (Het) mice have delayed wound closure, delayed morphological changes of regenerated epithelium, and defective keratinocyte proliferation and differentiation during wound healing.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.
Deer antler-derived reserve mesenchyme cells (RMCs) are a promising source of cells for cartilage regeneration therapy due to their chondrogenic differentiation potential. However, the regulatory mechanism has not yet been elucidated. In this study, we analyzed the role of microRNAs (miRNAs) in regulating the differentiation of RMCs and in the post-transcriptional regulation of chondrogenesis and hypertrophic differentiation at the molecular and histological levels.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China.
The ability of the mammalian kidney to repair or regenerate after acute kidney injury (AKI) is very limited. The maladaptive repair of AKI promotes progression to chronic kidney disease (CKD). Therefore, new strategies to promote the repair/regeneration of injured renal tubules after AKI are urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!