Predicting temperature-dependent transmission suitability of bluetongue virus in livestock.

Parasit Vectors

Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.

Published: July 2021

The transmission of vector-borne diseases is governed by complex factors including pathogen characteristics, vector-host interactions, and environmental conditions. Temperature is a major driver for many vector-borne diseases including Bluetongue viral (BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal agriculture and the economy of affected countries. Using modeling tools, we seek to predict where the transmission can occur based on suitable temperatures for BTV. We fit thermal performance curves to temperature-sensitive midge life-history traits, using a Bayesian approach. We incorporate these curves into S(T), a transmission suitability metric derived from the disease's basic reproductive number, [Formula: see text] This suitability metric encompasses all components that are known to be temperature-dependent. We use trait responses for two species of key midge vectors, Culicoides sonorensis and Culicoides variipennis present in North America. Our results show that outbreaks of BTV are more likely between 15[Formula: see text] C and [Formula: see text], with predicted peak transmission risk at 26 [Formula: see text] C. The greatest uncertainty in S(T) is associated with the following: the uncertainty in mortality and fecundity of midges near optimal temperature for transmission; midges' probability of becoming infectious post-infection at the lower edge of the thermal range; and the biting rate together with vector competence at the higher edge of the thermal range. We compare three model formulations and show that incorporating thermal curves into all three leads to similar BTV risk predictions. To demonstrate the utility of this modeling approach, we created global suitability maps indicating the areas at high and long-term risk of BTV transmission, to assess risk and to anticipate potential locations of disease establishment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323090PMC
http://dx.doi.org/10.1186/s13071-021-04826-yDOI Listing

Publication Analysis

Top Keywords

transmission suitability
8
vector-borne diseases
8
suitability metric
8
[formula text]
8
edge thermal
8
thermal range
8
transmission
7
btv
5
predicting temperature-dependent
4
temperature-dependent transmission
4

Similar Publications

Background: is a known cause of a zoonotic infectious illness called toxocariasis. Parathenic hosts are important as they can transmit larvae 2 (L) through direct transmission. Scanning electron microscope (SEM) techniques are needed to provide a three-dimensional image of each stage of larvae.

View Article and Find Full Text PDF

High-Speed Sequential DNA Computing Using a Solid-State DNA Origami Register.

ACS Cent Sci

December 2024

School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.

DNA computing leverages molecular reactions to achieve diverse information processing functions. Recently developed DNA origami registers, which could be integrated with DNA computing circuits, allow signal transmission between these circuits, enabling DNA circuits to perform complex tasks in a sequential manner, thereby enhancing the programming space and compatibility with various biomolecules of DNA computing. However, these registers support only single-write operations, and the signal transfer involves cumbersome and time-consuming register movements, limiting the speed of sequential computing.

View Article and Find Full Text PDF

Ordinary differential equation models such as the classical SIR model are widely used in epidemiology to study and predict infectious disease dynamics. However, these models typically assume that populations are homogeneously mixed, ignoring possible variations in disease prevalence due to spatial heterogeneity. To address this issue, reaction-diffusion models have been proposed as an alternative approach to modeling spatially continuous populations in which individuals move in a diffusive manner.

View Article and Find Full Text PDF

() is a Gram-negative, spiral-shaped bacterium that colonizes the gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global prevalence of approximately 50%. Despite the availability of treatment options, frequently reemerges and demonstrates increasing antibiotic resistance, which diminishes the efficacy of conventional therapies. Consequently, it is imperative to explore non-antibiotic treatment alternatives to mitigate the inappropriate use of antibiotics.

View Article and Find Full Text PDF

This study aims to develop a thermoresponsive biomaterial system of irinotecan (IRT) and curcumin (CUR) nano-transferosomal gel (IRT-CUR-NTG) for targeting colorectal cancer (CRC). The IRT-CUR-NTs were statistically optimized and loaded into poloxamer-based thermosensitive gel. Transmission electron microscopy (TEM), Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) of the IRT-CUR-NTs were performed, whereas pH, gelation time, gelation temperature, gel and mucoadhesive strength of the IRT-CUR-NTG were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!