The present study employed an anoxic packed bed biofilm reactor (AnPBR) inoculated with in-situ biosurfactant-producing bacteria for the biodegradation of petroleum wastewater. Highly acclimated biomass decreased the start-up phase period and with increasing the initial total petroleum hydrocarbon (TPH) concentration from 1.5 to 4 g/L was accompanied by TPH and chemical oxygen demand (COD) removal efficiencies of above 99% and 96%, respectively. Decreasing hydraulic retention time (HRT) from 24 to 6 h caused an increase in the specific hydrocarbon utilization rate value from 0.45 to 1.66 gTPH/g.d. Moreover, dehydrogenase activity, surfactin, and rhamnolipid reached 31.8 μgTF/g.d, 95.1, and 27.1 mg/L, respectively. The biodegradation kinetic coefficients such as K, K, K, Y and µ were 0.784 (d), 0.005 (g/L), 0.138 (d), 0.569 (gVSS/gCOD), and 0.446 (d), respectively. Dropping of bioreactor performance, especially TPH removal efficiency from 99% to 37.6% in the absence of nitrate after 10 days, indicates anoxic metabolism has been the dominant biodegradation pathway. The effluent chromatogram of gas chromatography/flame ionization detector (GC/FID) showed aliphatic, cyclic aliphatic, and aromatic hydrocarbons efficiently degraded. According to the high degradation rate of AnPBR in different operational parameters, it can be recommended for the treatment of oil-contaminated wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.126699 | DOI Listing |
Lasers Med Sci
January 2025
Hangzhou Third People's Hospital, Hangzhou, China.
Background: Post-inflammatory hyperpigmentation (PIH) is a common cosmetic concern, often leading to significant psychological distress for the patients. With the widespread application of lasers including ablative fractional resurfacing (AFR) with a 10,600 nm CO laser, PIH caused by lasers is becoming increasingly common. But due to the absence of an appropriate animal research model, our understanding of pathophysiological mechanisms and preventive strategies for PIH remains limited.
View Article and Find Full Text PDFImmunol Res
January 2025
Inflammatory Bowel Disease Clinic, Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga #15, Col. Belisario Domínguez Sección XVI, 14080, Mexico City, CPCDMX, Mexico.
The ABCC subfamily contains thirteen members. Nine of these transporters are called multidrug resistance proteins (MRPs). The MRPs have been associated with developing ulcerative colitis (UC).
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.
Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt.
The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!