Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The global occurrence of organic UV filters in the marine environment is of increasing ecotoxicological concern. Here we assessed the toxicity of UV filters ensulizole and octocrylene in the blue mussels Mytilus edulis exposed to 10 or 100 μg l of octocrylene and ensulizole for two weeks. An integrated battery of biochemical and molecular biomarkers related to xenobiotics metabolism and cellular toxicity (including oxidative stress, DNA damage, apoptosis, autophagy and inflammation) was used to assess the toxicity of these UV filters in the mussels. Octocrylene (but not ensulizole) accumulated in the mussel tissues during the waterborne exposures. Both studied UV filters induced sublethal toxic effects in M. edulis at the investigated concentrations. These effects involved induction of oxidative stress, genotoxicity (indicated by upregulation of DNA damage sensing and repair markers), upregulation of apoptosis and inflammation, and dysregulation of the xenobiotic biotransformation system. Octocrylene induced cellular stress in a concentration-dependent manner, whereas ensulizole appeared to be more toxic at the lower (10 μg l) studied concentration than at 100 μg l. The different concentration-dependence of sublethal effects and distinct toxicological profiles of ensulizole and octocrylene show that the environmental toxicity is not directly related to lipophilicity and bioaccumulation potential of these UV filters and demonstrate the importance of using bioassays for toxicity assessment of emerging pollutants in coastal marine ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!