An in silico validation framework for quantitative DCE-MRI techniques based on a dynamic digital phantom.

Med Image Anal

Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E 24th St, Austin, TX 78712, United States; Livestrong Cancer Institutes, United States; Departments of Biomedical Engineering, United States; Departments of Diagnostic Medicine, United States; Departments of Oncology, The University of Texas at Austin, Austin, TX 78712, United States; Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77030, United States.

Published: October 2021

Quantitative evaluation of an image processing method to perform as designed is central to both its utility and its ability to guide the data acquisition process. Unfortunately, these tasks can be quite challenging due to the difficulty of experimentally obtaining the "ground truth" data to which the output of a given processing method must be compared. One way to address this issue is via "digital phantoms", which are numerical models that provide known biophysical properties of a particular object of interest.  In this contribution, we propose an in silico validation framework for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquisition and analysis methods that employs a novel dynamic digital phantom. The phantom provides a spatiotemporally-resolved representation of blood-interstitial flow and contrast agent delivery, where the former is solved by a 1D-3D coupled computational fluid dynamic system, and the latter described by an advection-diffusion equation. Furthermore, we establish a virtual simulator which takes as input the digital phantom, and produces realistic DCE-MRI data with controllable acquisition parameters. We assess the performance of a simulated standard-of-care acquisition (Protocol A) by its ability to generate contrast-enhanced MR images that separate vasculature from surrounding tissue, as measured by the contrast-to-noise ratio (CNR). We find that the CNR significantly decreases as the spatial resolution (SR, where the subscript indicates Protocol A) or signal-to-noise ratio (SNR) decreases. Specifically, with an SNR / SR = 75 dB / 30 μm, the median CNR is 77.30, whereas an SNR / SR = 5 dB / 300 μm reduces the CNR to 6.40. Additionally, we assess the performance of simulated ultra-fast acquisition (Protocol B) by its ability to generate DCE-MR images that capture contrast agent pharmacokinetics, as measured by error in the signal-enhancement ratio (SER) compared to ground truth (PE). We find that PE significantly decreases the as temporal resolution (TR) increases. Similar results are reported for the effects of spatial resolution and signal-to-noise ratio on PE. For example, with an SNR / SR / TR = 5 dB / 300 μm / 10 s, the median PE is 21.00%, whereas an SNR / SR / TR = 75 dB / 60 μm / 1 s, yields a median PE of 0.90%. These results indicate that our in silico framework can generate virtual MR images that capture effects of acquisition parameters on the ability of generated images to capture morphological or pharmacokinetic features. This validation framework is not only useful for investigations of perfusion-based MRI techniques, but also for the systematic evaluation and optimization new MRI acquisition, reconstruction, and image processing techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453106PMC
http://dx.doi.org/10.1016/j.media.2021.102186DOI Listing

Publication Analysis

Top Keywords

validation framework
12
digital phantom
12
images capture
12
silico validation
8
dynamic digital
8
image processing
8
processing method
8
contrast agent
8
acquisition parameters
8
assess performance
8

Similar Publications

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Semantical text understanding holds significant importance in natural language processing (NLP). Numerous datasets, such as Quora Question Pairs (QQP), have been devised for this purpose. In our previous study, we developed a Siamese Convolutional Neural Network (S-CNN) that achieved an F1 score of 82.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows.

View Article and Find Full Text PDF

Critical care physicians are rich sources of innovation, developing new diagnostic, prognostic, and treatment tools they deploy in clinical practice, including novel software-based tools. Many of these tools are validated and promise to actively help patients, but physicians may be unlikely to distribute, implement, or share them with other centers noncommercially because of unsettled ethical, regulatory, or medicolegal concerns. This Viewpoint explores the potential barriers and risks critical care physicians face in disseminating device-related innovations for noncommercial purposes and proposes a framework for risk-based evaluation to foster clear pathways to safeguard equitable patient access and responsible implementation of clinician-generated technological innovations in critical care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!