Quantitative evaluation of an image processing method to perform as designed is central to both its utility and its ability to guide the data acquisition process. Unfortunately, these tasks can be quite challenging due to the difficulty of experimentally obtaining the "ground truth" data to which the output of a given processing method must be compared. One way to address this issue is via "digital phantoms", which are numerical models that provide known biophysical properties of a particular object of interest. In this contribution, we propose an in silico validation framework for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquisition and analysis methods that employs a novel dynamic digital phantom. The phantom provides a spatiotemporally-resolved representation of blood-interstitial flow and contrast agent delivery, where the former is solved by a 1D-3D coupled computational fluid dynamic system, and the latter described by an advection-diffusion equation. Furthermore, we establish a virtual simulator which takes as input the digital phantom, and produces realistic DCE-MRI data with controllable acquisition parameters. We assess the performance of a simulated standard-of-care acquisition (Protocol A) by its ability to generate contrast-enhanced MR images that separate vasculature from surrounding tissue, as measured by the contrast-to-noise ratio (CNR). We find that the CNR significantly decreases as the spatial resolution (SR, where the subscript indicates Protocol A) or signal-to-noise ratio (SNR) decreases. Specifically, with an SNR / SR = 75 dB / 30 μm, the median CNR is 77.30, whereas an SNR / SR = 5 dB / 300 μm reduces the CNR to 6.40. Additionally, we assess the performance of simulated ultra-fast acquisition (Protocol B) by its ability to generate DCE-MR images that capture contrast agent pharmacokinetics, as measured by error in the signal-enhancement ratio (SER) compared to ground truth (PE). We find that PE significantly decreases the as temporal resolution (TR) increases. Similar results are reported for the effects of spatial resolution and signal-to-noise ratio on PE. For example, with an SNR / SR / TR = 5 dB / 300 μm / 10 s, the median PE is 21.00%, whereas an SNR / SR / TR = 75 dB / 60 μm / 1 s, yields a median PE of 0.90%. These results indicate that our in silico framework can generate virtual MR images that capture effects of acquisition parameters on the ability of generated images to capture morphological or pharmacokinetic features. This validation framework is not only useful for investigations of perfusion-based MRI techniques, but also for the systematic evaluation and optimization new MRI acquisition, reconstruction, and image processing techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453106 | PMC |
http://dx.doi.org/10.1016/j.media.2021.102186 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biomedical and Health Informatics, Tsui Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America.
Semantical text understanding holds significant importance in natural language processing (NLP). Numerous datasets, such as Quora Question Pairs (QQP), have been devised for this purpose. In our previous study, we developed a Siamese Convolutional Neural Network (S-CNN) that achieved an F1 score of 82.
View Article and Find Full Text PDFPLoS One
January 2025
Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia.
This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.
View Article and Find Full Text PDFElife
January 2025
Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows.
View Article and Find Full Text PDFCrit Care Med
December 2024
Division of Neurocritical Care, Massachusetts General Hospital, Boston, MA.
Critical care physicians are rich sources of innovation, developing new diagnostic, prognostic, and treatment tools they deploy in clinical practice, including novel software-based tools. Many of these tools are validated and promise to actively help patients, but physicians may be unlikely to distribute, implement, or share them with other centers noncommercially because of unsettled ethical, regulatory, or medicolegal concerns. This Viewpoint explores the potential barriers and risks critical care physicians face in disseminating device-related innovations for noncommercial purposes and proposes a framework for risk-based evaluation to foster clear pathways to safeguard equitable patient access and responsible implementation of clinician-generated technological innovations in critical care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!