Transient alendronate administration to pregnant or lactating mothers prevents bone loss in mice without adverse effects on offspring.

Bone

Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan. Electronic address:

Published: December 2021

Changes in bone metabolism occur in mothers during pregnancy or lactation that may decrease bone mass and result in fragility fractures after partum. However, use of drugs during pregnancy or lactation to counteract these effects is often prohibited or strongly discouraged. Therefore, approaches to protect mothers from fragility fractures have not been established. Here we show that bone mineral density was significantly lower in female mice after partum than in age-matched female mice without partum. We also show that temporary administration of the bisphosphonate alendronate, either just before or just after pregnancy, to female mice was protective against bone loss due to pregnancy or lactation and had no adverse effects on offspring, such as growth retardation. Furthermore, we show that alendronate administration to female mice during lactation was effective in increasing bone mass in mothers without promoting bone abnormalities or growth retardation in offspring. Calcium levels in milk from female mice administered alendronate during lactation were equivalent to those in milk from mothers not treated with alendronate. Overall, we propose that alendronate administration to mothers could prevent bone loss and fragility fractures during pregnancy and lactation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2021.116133DOI Listing

Publication Analysis

Top Keywords

female mice
20
pregnancy lactation
16
alendronate administration
12
bone loss
12
fragility fractures
12
bone
8
adverse effects
8
effects offspring
8
bone mass
8
mice partum
8

Similar Publications

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

Heterogeneity in Fluorescence-Stained Sperm Membrane Patterns and Their Dynamic Changes Towards Fertilization in Mice.

Front Biosci (Landmark Ed)

January 2025

Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.

Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!