A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of dual crosslinked mumio-based hydrogel dressing for wound healing application: Physico-chemistry and antimicrobial activity. | LitMetric

Development of dual crosslinked mumio-based hydrogel dressing for wound healing application: Physico-chemistry and antimicrobial activity.

Int J Pharm

Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 76001 Zlin, Czech Republic.

Published: September 2021

AI Article Synopsis

  • An antimicrobial hydrogel dressing was created using mumio, gelatin, and polyvinyl alcohol that forms a double crosslinked network for effective wound healing.
  • By adding bacterial cellulose to the hydrogel, the study improved its mechanical strength while maintaining stability and lower swelling properties.
  • The hydrogel showed non-toxicity in cell tests and exhibited promising antimicrobial effects against various bacteria and fungi, suggesting its potential as an effective wound dressing.

Article Abstract

In this study, an antimicrobial mumio-based hydrogel dressing was developed for wound healing application. The mechanism of gel formation was achieved via a double crosslink network formation between gelatin (GT) and polyvinyl alcohol (PVA) using polyethylene glycol diglycidyl ether (PEGDE) and borax as crosslinking agents. To enhance the mechanical integrity of the hydrogel matrix, bacterial cellulose (BC) was integrated into the GT-PVA hydrogel to produce a composite gel dressing. The obtained hydrogel was characterized by FTIR, SEM, TGA, and XRD. Gel fraction, in vitro swelling and degradation as well as compressive modulus properties of the gel dressing were investigated as a function of change in PVA and BC ratios. By increasing the ratios of PVA and BC, the composite dressing showed lower swelling but higher mechanical strength. Comparing to other formulations, the gel with 4 %w/v PVA and 1 %w/v BC demonstrated to be most suitable in terms of stability and mechanical properties. In vitro cell cytotoxicity by MTT assay on human alveolar basal epithelial (A549) cell lines validated the gels as non-toxic. In addition, the mumio-based gel was compared to other formulations containing different bioactive agents of beeswax and cinnamon oil, which were tested for microbial growth inhibition effects against different bacteria (S. aureus and K. pneumoniae) and fungi (C. albicans and A. niger) strains. Results suggested that the gel dressing containing combinations of mumio, beeswax and cinnamon oil possess promising future in the inhibition of microbial infection supporting its application as a suitable dressing for wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120952DOI Listing

Publication Analysis

Top Keywords

wound healing
12
gel dressing
12
mumio-based hydrogel
8
hydrogel dressing
8
dressing wound
8
healing application
8
beeswax cinnamon
8
cinnamon oil
8
dressing
7
gel
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!