Background: Inhaled nanoparticles (NPs) challenges mobile and immobile barriers in the respiratory tract, which can be represented by type II pneumocytes (immobile) and monocytes (mobile) but what is more important for biological effects, the cell linage, or the type of nanoparticle? Here, we addressed these questions and we demonstrated that the type of NPs exerts a higher influence on biological effects, but cell linages also respond differently against similar type of NPs.

Design: Type II pneumocytes and monocytes were exposed to tin dioxide (SnO) NPs and titanium dioxide (TiO) NPs (1, 10 and 50 μg/cm) for 24 h and cell viability, ultrastructure, cell granularity, molecular spectra of lipids, proteins and nucleic acids and cytoskeleton architecture were evaluated.

Results: SnO NPs and TiO NPs are metal oxides with similar physicochemical properties. However, in the absence of cytotoxicity, SnO NPs uptake was low in monocytes and higher in type II pneumocytes, while TiO NPs were highly internalized by both types of cells. Monocytes exposed to both types of NPs displayed higher number of alterations in the molecular patterns of proteins and nuclei acids analyzed by Fourier-transform infrared spectroscopy (FTIR) than type II pneumocytes. In addition, cells exposed to TiO NPs showed more displacements in FTIR spectra of biomolecules than cells exposed to SnO NPs. Regarding cell architecture, microtubules were stable in type II pneumocytes exposed to both types of NPs but actin filaments displayed a higher number of alterations in type II pneumocytes and monocytes exposed to SnO NPs and TiO NPs. NPs exposure induced the formation of large vacuoles only in monocytes, which were not seen in type II pneumocytes.

Conclusions: Most of the cellular effects are influenced by the NPs exposure rather than by the cell type. However, mobile, and immobile barriers in the respiratory tract displayed differential response against SnO NPs and TiO NPs in absence of cytotoxicity, in which monocytes were more susceptible than type II pneumocytes to NPs exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2021.109596DOI Listing

Publication Analysis

Top Keywords

type pneumocytes
28
sno nps
24
tio nps
24
nps
19
type
12
monocytes exposed
12
nps tio
12
nps exposure
12
differential response
8
pneumocytes
8

Similar Publications

PLAC8 attenuates pulmonary fibrosis and inhibits apoptosis of alveolar epithelial cells via facilitating autophagy.

Commun Biol

January 2025

Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

Idiopathic pulmonary fibrosis (IPF) is an irreversible lung condition that progresses over time, which ultimately results in respiratory failure and mortality. In this study, we found that PLAC8 was downregulated in the lungs of IPF patients based on GEO data, in bleomycin (BLM)-induced lungs of mice, and in primary murine alveolar epithelial type II (pmATII) cells and human lung epithelial cell A549 cells. Overexpression of PLAC8 facilitated autophagy and inhibited apoptosis of pmATII cells and A549 cells in vitro.

View Article and Find Full Text PDF

Integrin α8 is a useful cell surface marker of alveolar lipofibroblasts.

Respir Res

January 2025

Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.

Background: Recent advances in comprehensive gene analysis revealed the heterogeneity of mouse lung fibroblasts. However, direct comparisons between these subpopulations are limited due to challenges in isolating target subpopulations without gene-specific reporter mouse lines. In addition, the properties of lung lipofibroblasts remain unclear, particularly regarding the appropriate cell surface marker and the niche capacity for alveolar epithelial cell type 2 (AT2), an alveolar tissue stem cell.

View Article and Find Full Text PDF

Wnt3a Enhances Mesenchymal Stem Cell Engraftment and Differentiation in a Chronic Obstructive Pulmonary Disease Rat Model.

Int J Chron Obstruct Pulmon Dis

January 2025

Department of Respiratory and Critical Care Medicine, Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.

Background: Bone marrow mesenchymal stem cell (BMSC) therapy is a novel approach for treating COPD. However, the difficulty in engraftment and easy clearance of BMSCs in vivo has hindered their clinical application. Hence, exploring effective methods to improve the engraftment and differentiation rates of BMSCs in vivo is urgent.

View Article and Find Full Text PDF

Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.

View Article and Find Full Text PDF

Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!