Solid state laser refrigeration can cool optically levitated nanocrystals in an optical dipole trap, allowing for internal temperature control by mitigating photothermal heating. This work demonstrates cooling of ytterbium-doped cubic sodium yttrium fluoride nanocrystals to 252 K on average with the most effective crystal cooling to 241 K. The amount of cooling increases linearly with the intensity of the cooling laser and is dependent on the pressure of the gas surrounding the nanocrystal. Cooling optically levitated nanocrystals allows for crystals prone to heating to be studied at lower pressures than currently achievable and for temperature control and stabilization of trapped nanocrystals.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.426334DOI Listing

Publication Analysis

Top Keywords

optically levitated
12
laser refrigeration
8
sodium yttrium
8
yttrium fluoride
8
fluoride nanocrystals
8
levitated nanocrystals
8
temperature control
8
nanocrystals
5
cooling
5
refrigeration optically
4

Similar Publications

Highly energetic boron (B) particles embedded in hydroxyl-terminated polybutadiene (HTPB) thermosetting polymers represent stable solid-state fuel. Laser-heating of levitated B/HTPB and pure HTPB particles in a controlled atmosphere revealed spontaneous ignition of B/HTPB in air, allowing for examination of the exclusive roles of boron. These ignition events are probed via simultaneous spectroscopic diagnostics: Raman and infrared spectroscopy, temporally resolved high-speed optical and infrared cameras, and ultraviolet-visible (UV-vis) spectroscopy.

View Article and Find Full Text PDF

Optical binding refers to the light-induced interaction between two or more objects illuminated by laser fields. The high tunability of the strength, sign, and reciprocity of this interaction renders it highly attractive for controlling nanoscale mechanical motion. Here, we discuss the quantum theory of optical binding and identify unique signatures of this interaction in the quantum regime.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spans diverse fields from biology to quantum science. Employing NMR on a floating object could unveil novel possibilities beyond conventional operational paradigms. Here, we observe NMR within a levitating microdiamond using the nuclear spins of nitrogen-14 atoms.

View Article and Find Full Text PDF
Article Synopsis
  • - Critical Casimir forces act on particles in a near-critical fluid, allowing researchers to manipulate particle behavior based on surface properties and small temperature changes.
  • - The study explores how these forces can trap colloidal particles by using specially designed substrates with contrasting surface properties, enabling different levitation effects like sedimentation and point levitation.
  • - By analyzing various parameters, the research indicates that while the conditions for point levitation become limited when moved away from critical points, the trapping force increases, highlighting potential applications in sorting colloids by size and measuring thermodynamic properties.
View Article and Find Full Text PDF

Optically levitated multiple nanoparticles have emerged as a platform for studying complex fundamental physics such as non-equilibrium phenomena, quantum entanglement, and light-matter interaction, which could be applied for sensing weak forces and torques with high sensitivity and accuracy. An optical trapping landscape of increased complexity is needed to engineer the interaction between levitated particles beyond the single harmonic trap. However, existing platforms based on spatial light modulators for studying interactions between levitated particles suffered from low efficiency, instability at focal points, the complexity of optical systems, and the scalability for sensing applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!