Thermal emission is a universal phenomenon of stochastic electromagnetic emission from absorbing bodies at elevated temperatures. A defining feature of this emission is the monotonic and rapid growth of its intensity with the object's temperature for most known materials. This growth originates from the Bose-Einstein statistics of the thermal photonic field. The fact that the material's ability to emit light may change with temperature, however, is often overlooked. Here, we carry out a theoretical study of thermal emission from structures incorporating two-level media. We investigate this effect in a range of geometries including thin films and compact nanoparticles and establish the general dependencies in the evolution of thermal emission from such systems. Thermal emission turns out to be essentially non-Planckian and exhibits a universal asymptotic behavior in the limit of high temperatures. These results might have important implications for the design of thermal energy harvesting and thermal vision systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.433050 | DOI Listing |
Dalton Trans
January 2025
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.
Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).
View Article and Find Full Text PDFInorg Chem
January 2025
Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, PR China.
Organic-inorganic hybrid perovskites (OIHPs) have attracted enormous attention owing to their intriguing structural tunability and diverse functional properties. Reconstructive phase transitions, involving the breaking and reconstruction of chemical bonds, have rarely been found in such materials; however, these features may induce many intriguing physical properties in optics, ferroelectrics, ferromagnetics, and so forth. Here, we utilized the weak and switchable coordination bonds of HETMA-MnCl (HETMA = (2-hydroxyethyl) trimethylammonium) to construct a 1D hybrid perovskite employing a neutral framework.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Materials Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran.
AISI 316L stainless steel is extensively used in various fields, including medicine. In this study, in order to improve antibacterial properties, reduce elastic modulus, increase hydrophilicity and delay corrosion on the surface of AISI 316L stainless steel pieces for biomedical applications, zinc and magnesium elements were used for coating. Zn monolayer, Zn-Mg bilayer, and Zn-Mg-Zn triple coatings were deposited on AISI 316L substrates using the thermal evaporation method.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Food Engineering Technologies, Faculty of Technical Engineering, Aleppo University, Syria.
The objective of this study was to extract and characterize nanocellulose from sesame husks, which are typically discarded as waste by sesame processing facilities. However, these husks are rich in cellulose, presenting a valuable potential source for nanocellulose. Sesame husk cellulose (SHC) was initially isolated through a multi-step process that removed oil, hemicellulose, and lignin.
View Article and Find Full Text PDFInorg Chem
January 2025
International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
Hg is highly toxic and can cause serious harm to the environment and humans. Thus, it is vital to develop efficient Hg sensors. In this work, a LMOF-based (LMOF = luminescent metal-organic framework) "turn-on" Hg sensor () is first developed by an aggregation-induced emission (AIE) functional ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!