AI Article Synopsis

Article Abstract

Generative adversarial networks are being extensively studied for low-dose computed tomography denoising. However, due to the similar distribution of noise, artifacts, and high-frequency components of useful tissue images, it is difficult for existing generative adversarial network-based denoising networks to effectively separate the artifacts and noise in the low-dose computed tomography images. In addition, aggressive denoising may damage the edge and structural information of the computed tomography image and make the denoised image too smooth. To solve these problems, we propose a novel denoising network called artifact and detail attention generative adversarial network. First, a multi-channel generator is proposed. Based on the main feature extraction channel, an artifacts and noise attention channel and an edge feature attention channel are added to improve the denoising network's ability to pay attention to the noise and artifacts features and edge features of the image. Additionally, a new structure called multi-scale Res2Net discriminator is proposed, and the receptive field in the module is expanded by extracting the multi-scale features in the same scale of the image to improve the discriminative ability of discriminator. The loss functions are specially designed for each sub-channel of the denoising network corresponding to its function. Through the cooperation of multiple loss functions, the convergence speed, stability, and denoising effect of the network are accelerated, improved, and guaranteed, respectively. Experimental results show that the proposed denoising network can preserve the important information of the low-dose computed tomography image and achieve better denoising effect when compared to the state-of-the-art algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2021.3101616DOI Listing

Publication Analysis

Top Keywords

generative adversarial
16
computed tomography
16
denoising network
16
low-dose computed
12
denoising
10
artifact detail
8
detail attention
8
attention generative
8
adversarial networks
8
noise artifacts
8

Similar Publications

Retinal OCT image classification based on MGR-GAN.

Med Biol Eng Comput

January 2025

School of Automation and Information Engineering, Sichuan University of Science & Engineering, Key Laboratory of Artificial Intelligence, Yibin, 644000, Sichuan, China.

Accurately classifying optical coherence tomography (OCT) images is essential for diagnosing and treating ophthalmic diseases. This paper introduces a novel generative adversarial network framework called MGR-GAN. The masked image modeling (MIM) method is integrated into the GAN model's generator, enhancing its ability to synthesize more realistic images by reconstructing them based on unmasked patches.

View Article and Find Full Text PDF

A generative adversarial network (GAN) makes it possible to map a data sample from one domain to another one. It has extensively been employed in image-to-image and text-to image translation. We propose an EEG-to-EEG translation model to map the scalp-mounted EEG (scEEG) sensor signals to intracranial EEG (iEEG) sensor signals recorded by foramen ovale sensors inserted into the brain.

View Article and Find Full Text PDF

Accurately identifying and discriminating between different brain states is a major emphasis of functional brain imaging research. Various machine learning techniques play an important role in this regard. However, when working with a small number of study participants, the lack of sufficient data and achieving meaningful classification results remain a challenge.

View Article and Find Full Text PDF

Improved Grain Boundary Reconstruction Method Based on Channel Attention Mechanism.

Materials (Basel)

January 2025

Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.

The grain size of metal materials has a significant impact on their macroscopic properties. However, original metallographic images often suffer from issues such as substantial noise, missing grain boundaries, low contrast, and blurred edges. These challenges hinder the accurate extraction of complete grain boundaries, limiting the precision of grain size measurement and material performance prediction.

View Article and Find Full Text PDF

Anomaly detection is crucial in areas such as financial fraud identification, cybersecurity defense, and health monitoring, as it directly affects the accuracy and security of decision-making. Existing generative adversarial nets (GANs)-based anomaly detection methods overlook the importance of local density, limiting their effectiveness in detecting anomaly objects in complex data distributions. To address this challenge, we introduce a generative adversarial local density-based anomaly detection (GALD) method, which combines the data distribution modeling capabilities of GANs with local synthetic density analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!