Microplastics are ubiquitous environmental pollutants and a great threat to the aquatic environment. Due to their small size (ranging from 1 µm to 5 mm), microplastics be easily ingested by a wide range of organisms and can serve as a vector for various contaminants. In this study, additive or possible synergistic effects of microplastics and zinc were demonstrated through sex-specific alterations in behavior, redox status, and modulation of detoxification-related genes in Daphnia magna, with males being more sensitive than females with stronger modulations of antioxidant responses, particularly on glutathione S-transferases expressions. Furthermore, we demonstrated microplastics may act as vectors for metals (Zn) in the aquatic environment in D. magna, with reduced bio-concentration of the total Zn concentration, inducing greater toxicity. Our findings demonstrated synergistic toxicity of the heavy metal Zn and microplastics and could contribute to greater understanding of sex-specific effects of microplastics in aquatic organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.126652 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!