Microplastics (MPs) are emerging pollutants as vectors for microbial colonization, but their role as nutrients sources for microbial communities has rarely been reported. This study explored the impact of six types of MPs on assimilable organic carbon (AOC) and microbial communities over eight weeks. The following were the primary conclusions: (1) MPs contributed to AOC increment and subsequently increased bacterial regrowth potential. The maximum AOC reached 722.03 μg/L. The increase in AOC formation corresponded to AOC NOX, except in PVC samples where AOC P17 primarily increased. (2) The MPs accelerated bacterial growth and changed the bacterial distribution between the biofilm and water phases. A high MP surface-area-to-volume ratio or low MPs density contributed to bacterial accumulation and biofilm formation around the plastisphere, thereby decreasing the relative microbial proportion in the water phase. (3) High-throughput sequencing and scanning electron microscope revealed that different MPs shaped various microbial communities temporally and spatially. (4) Biofilm formatting and formatted models were established and simulated to explain the kinetic interaction between the AOC and bacteria inhabiting the plastisphere. Finally, the challenges that plastic-deprived AOC represent in terms of anti-bacterial measures and chemical safety are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126662DOI Listing

Publication Analysis

Top Keywords

microbial communities
16
aoc
8
microbial
6
mps
6
microplastics carbon-nutrient
4
carbon-nutrient sources
4
sources shaper
4
shaper microbial
4
communities
4
communities stagnant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!