Despite the ubiquitousness of microplastics, knowledge on the exposure of freshwater fish to microplastics is still limited. Moreover, no standard methods are available for analyzing microplastics, and the quality of methods used for the quantification of ingested microplastics in fish should be improved. In this study, we studied microplastic ingestion of common wild freshwater fish species, perch (Perca fluviatilis) and vendace (Coregonus albula). Further, our aim was to develop and validate imaging Fourier-transform infrared spectroscopic method for the quantification of ingested microplastics. For this purpose, enzymatically digested samples were measured with focal plane array (FPA) based infrared microscope. Data was analyzed with siMPle software, which provides counts, mass estimations, sizes, and materials for the measured particles. Method validation was conducted with ten procedural blanks and recovery tests, resulting in 75% and 77% recovery rates for pretreatment and infrared imaging, respectively. Pretreatment caused contamination principally by small <100 μm microplastics. The results showed that 17% of perch and 25% of vendace had ingested plastic. Most of the fish contained little or no plastics, while some individuals contained high numbers of small particles or alternatively few large particles. Perch from one sampling site out of five had ingested microplastics, but vendace from all sampling sites had ingested microplastics. The microplastics found from fish were mostly small: 81% had particle size between 20 and 100 μm, and most of them were polyethylene, polypropylene, and polyethylene terephthalate. In conclusion, the implemented method revealed low numbers of ingested microplastics on average but needs further development for routine monitoring of small microplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.117780DOI Listing

Publication Analysis

Top Keywords

spectroscopic method
8
analyzing microplastics
8
perca fluviatilis
8
coregonus albula
8
freshwater fish
8
quantification ingested
8
ingested microplastics
8
microplastics
6
validation imaging
4
imaging ftir
4

Similar Publications

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

Spectroscopic liquid biopsy: A novel promising method for early cancer screening.

J Transl Med

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 211189, Nanjing, China.

View Article and Find Full Text PDF

Rapid on-site colorimetric detection of arsenic(V) by NH-MIL-88(Fe) nanozymes-based ultraviolet-visible spectroscopic and smartphone-assisted sensing platforms.

Anal Chim Acta

January 2025

College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:

Background: Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity.

View Article and Find Full Text PDF

Background: The unregulated use of pesticides by farmers, for crop productivity results in widespread contamination of organophosphates in real environmental samples, which is a growing societal concern about their potential health effects. The conventional approaches for the monitoring these organophosphate-based pesticides which include immunoassays, electrochemical methods, immunosensors, various chromatography techniques, along with some spectroscopic methods, are either costly, sophisticated, or involves the use of different metal complexes. Therefore, there is an urgent need for sensitive, quick, and easy-to-use detection techniques for the screening of widely used organophosphate-based pesticides.

View Article and Find Full Text PDF

Background: Nitroxyl (HNO) is an emerging signaling molecule that plays a significant regulatory role in various aspects of plant biology, including stress responses and developmental processes. However, understanding the precise actions of HNO in plants has been challenging due to the absence of highly sensitive and real-time in situ monitoring tools. Consequently, it is crucial to develop effective and accurate detection methods for HNO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!