Norfloxacin, a kind of antibiotic frequently detected in environments, represents a group of non-persistent organic pollutants with latent risks to the ecosystem. Iron ore waste, generated and accumulated in large quantities from the iron/steel industry, was evaluated as a potential sorbent for norfloxacin removal. Kinetics analysis showed that the adsorption process reached equilibrium at 72 h, and the adsorption process could be best defined by the pseudo-second-order kinetics with the primary mechanism of norfloxacin adsorption suggested to be cation exchange. Further, adsorption of norfloxacin to iron ore waste was shown to be facilitated by the pH range of 2-10, low cation concentration, and low temperature, which are characteristic of natural surface waters, suggesting the potential of practical applications in aquatic environments. These findings provide new insight into the potentials of beneficial reuse for iron ore waste in the adsorptive removal of environmental pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.126273 | DOI Listing |
Materials (Basel)
January 2025
School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
To investigate the influence of alkali metal compounds in different forms on the sintering mineralization process of iron ore, the basic sintering characteristics of iron ore with alkali metal contents ranging from 0 to 4% were measured using the micro-sintering method, and the influence mechanism was analyzed using thermodynamic analysis and first-principles calculations. The results showed that (1) the addition of KCl/NaCl increased the lowest assimilation temperature (LAT) and the index of liquid-phase fluidity (ILF), while that of KCO/NaCO decreased the LAT but increased the ILF of iron ore. (2) The pores formed by the volatilization of KCl/NaCl suppressed the diffusion of Fe and Ca, which inhibited the formation of silico-ferrite of calcium and aluminum (SFCA).
View Article and Find Full Text PDFPLoS One
January 2025
Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.
View Article and Find Full Text PDFRSC Adv
January 2025
Kunming Metallurgical Research Institute Co., Ltd Kunming 650000 China.
Scandium (Sc) extraction from iron and aluminum waste is a promising technique for the recycling and valorization of laterite nickel ore waste. Iron and aluminum waste is one source of scandium during preparation of nickel and cobalt hydroxide by wet smelting of laterite nickel ore. The content of Sc is notably higher than that of the raw materials, as the element is enriched in the iron and aluminum waste.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Utkal University, Bhubaneswar, 751 004, Odisha, India.
This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chemistry Memorial University of Newfoundland Core Science Facility, 45 Arctic Avenue, A1C 5S7, St. John's, NL, Canada.
Developing the mechanism for MOF formation is crucial for the rapid development of new materials. This work demonstrates that Deuterium NMR spectroscopy is the optimal inter-laboratory methodology for understanding the in situ kinetics of metal-organic framework (MOF) formation. This method is facile, affordable, and allows for the isolation and monitoring of individual reagents by using one deuterated component while the remaining components are protonated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!