Shotgun metagenomics assessment of the resistome, mobilome, pathogen dynamics and their ecological control modes in full-scale urban wastewater treatment plants.

J Hazard Mater

Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, Nicosia, CY 1678, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, Nicosia, CY 1678, Cyprus. Electronic address:

Published: September 2021

AI Article Synopsis

  • The conventional activated sludge (CAS) process struggles to effectively eliminate pathogenic microorganisms and antibiotic resistance genes (ARGs) compared to membrane bioreactors (MBRs).
  • Researchers conducted a study on two urban wastewater treatment plants, one using MBR and the other CAS, utilizing shotgun metagenomics to analyze the presence of pathogenic bacteria and resistance genes in both influents and effluents.
  • MBR systems showed superior performance in reducing pathogenic taxa and specific resistance genes, suggesting they could lessen health risks linked to wastewater reuse by better retaining harmful components.

Article Abstract

The conventional activated sludge (CAS) process has limited capacity to remove pathogenic microorganisms and antibiotic resistance genes (ARGs), compared to membrane bioreactors (MBRs). However, the full extent of pathogenic microbial fraction, resistome (antibiotic and biocide resistance genes, ARGs and BRGs) and mobilome (mobile genetic elements, MGE) of urban wastewater treatment plant (UWTP) influents and effluents remains unknown. Thus, the fate of putative pathogenic bacteria, ARGs and potential co-occurrence patterns with BRGs, MGEs and bacterial-predatory microorganisms was determined in two full-scale UWTPs, a MBR and a CAS system, using shotgun metagenomics. Both UWTPs significantly reduced the BOD (99.4-99.9%), COD (97.6-99.4%) and TSS (98.9-99.9%). MBR was more effective in reducing the abundance and diversity of pathogen-containing taxa, with 4 and 30 taxa enriched in MBR and CAS effluents, respectively. MBR treatment favored resistance genes associated with triclosan, whereas CAS effluents contained ARGs associated with antibiotics of clinical importance. Correlations between putative pathogenic bacteria, ARG/BRGs/MGEs and bacterial-predatory microorganisms suggested that: (i) opportunistic pathogens (Clostridia, Nocardia) may acquire ARGs against first-line treatments and (ii) bacteriophages may act as a biogenic mechanism of pathogen removal. These findings reinforce the MBR capacity to retain pathogenic components, hence reducing potential health risks associated with treated wastewater reuse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126387DOI Listing

Publication Analysis

Top Keywords

resistance genes
12
shotgun metagenomics
8
urban wastewater
8
wastewater treatment
8
genes args
8
putative pathogenic
8
pathogenic bacteria
8
bacterial-predatory microorganisms
8
mbr cas
8
cas effluents
8

Similar Publications

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Epidemiological evidence has shown that the regular ingestion of vegetables and fruits is associated with reduced risk of developing chronic diseases. The introduction of the 3Rs (replacement, reduction, and refinement) principle into animal experiments has led to the use of valid, cost-effective, and efficient alternative and complementary invertebrate animal models which are simpler and lower in the phylogenetic hierarchy. Caenorhabditis elegans (C.

View Article and Find Full Text PDF

Time-series analysis reveals metabolic and transcriptional dynamics during mulberry fruit development and ripening.

Int J Biol Macromol

January 2025

Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China. Electronic address:

Understanding the global transcriptomic and metabolic changes during mulberry growth and development is essential for the enhancing fruit quality and optimizing breeding strategies. By integrating phenotypic, metabolomic, and transcriptomic data across 18 developmental and ripening stages of Da10 mulberry fruit, a global map of gene expression and metabolic changes was generated. Analysis revealed a gradual progression of morphological, metabolic, and transcriptional changes throughout the development and ripening phases.

View Article and Find Full Text PDF

MarR family regulator LcbR2 activates lincomycin biosynthesis in multiple ways.

Int J Biol Macromol

January 2025

Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.

Lincomycin, produced by the actinomycete Streptomyces lincolnensis, is highly effective against Gram-positive bacteria and protozoans, making it widely used in clinical settings. This study identified LcbR2, a MarR family transcriptional regulator, as an activator of lincomycin biosynthesis. Knocking out the lcbR2 gene reduced lincomycin production by 63.

View Article and Find Full Text PDF

Biological studies reveal the role of trpA gene in biofilm formation, motility, hemolysis and virulence in Vibrio anguillarum.

Microb Pathog

January 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Vibrio anguillarum is a pathogen responsible for vibriosis in aquaculture animals. The formation of bacterial biofilm contributes to infections and increases resistance to antibiotics. Tryptophanase and its substrate tryptophan have been recognized as signal molecules regulating bacterial biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!