Biochar protects hydrophilic dissolved organic matter against mineralization and enhances its microbial carbon use efficiency.

Sci Total Environ

Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China. Electronic address:

Published: November 2021

A combination of biochar with exogenous organic material in soils is often used in practical farmland management. The objective of this study was to determine how biochar affects organic matter decomposition by studying the decomposition of C-labelled hydrophilic (Hi-) and hydrophobic (Ho-) dissolved organic matter (DOM) in acid and neutral soils during a 60-day incubation experiment. The proportions of carbon (C) mineralization in Hi-DOM with or without biochar addition were 32.6% or 34.5% in acid soil (P > 0.05) and 15.4% or 22.3% in neutral soil (P < 0.05), respectively. In contrast, those proportions of Ho-DOM-C mineralization with or without biochar addition were 20.0% or 21.4% in acid soil and 19.0% or 20.5% in neutral soil (P > 0.05), respectively. These results showed that biochar could protect Hi-DOM against mineralization in neutral soil but exhibited less effect on Ho-DOM mineralization in both acid and neutral soils. Additionally, biochar did not affect microbial incorporation of Hi- or Ho-DOM in acid and neutral soils. However, biochar notably improved the microbial carbon use efficiency (CUE) of Hi-DOM while it significantly reduced the CUE of Ho-DOM in neutral soil (P < 0.05), indicating that the effect of biochar on microbial CUE was related to organic matter type and soil pH. This study suggests that Hi-DOM can outperform Ho-DOM to decrease C loss and improve microbial CUE in neutral soil with biochar addition. This phenomenon could be due mainly to the different chemical compositions of Hi-DOM and Ho-DOM and their distinct microbial preference. These findings can provide references for biochar's ability to regulate the decomposition of organic matter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.148793DOI Listing

Publication Analysis

Top Keywords

organic matter
20
neutral soil
20
soil 005
16
acid neutral
12
neutral soils
12
biochar addition
12
biochar
10
dissolved organic
8
microbial carbon
8
carbon efficiency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!