Membrane distillation is a promising technology to desalinate hypersaline produced waters. However, the organic content can foul and wet the membrane, while some fractions may pass into the distillate and impair its quality. In this study, the applicability of the traditional Fenton process was investigated and preliminarily optimized as a pre-treatment of a synthetic hypersaline produced water for the following step of membrane distillation. The Fenton process was also compared to a modified Fenton system, whereby safe iron ligands, i.e., ethylenediamine-N,N'-disuccinate and citrate, were used to overcome practical limitations of the traditional reaction. The oxidation pre-treatments achieved up to 55% removal of the dissolved organic carbon and almost complete degradation of the low molecular weight toxic organic contaminants. The pre-treatment steps did not improve the productivity of the membrane distillation process, but they allowed for obtaining a final effluent with significantly higher quality in terms of organic content and reduced Vibrio fischeri inhibition, with half maximal effective concentration (EC) values up to 25 times those measured for the raw produced water. The addition of iron ligands during the oxidation step simplified the process, but resulted in an effluent of slightly lower quality in terms of toxicity compared to the use of traditional Fenton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.148953 | DOI Listing |
Polymers (Basel)
December 2024
Department of Environmental Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey.
In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.
View Article and Find Full Text PDFLife (Basel)
December 2024
Facultad de Ciencias de la Tierra, Universidad Estatal Amazónica (UEA), Vía Tena km 2½, Puyo 160150, Pastaza, Ecuador.
Essential oils are investigated due to their biological activity, and the Amazon rainforest, with its rich biodiversity, is a promising source of therapeutic compounds. The aim of this study was to evaluate the essential oil from the leaves of as an antifungal agent, thus contributing to the search for alternatives that can address the growing resistance to conventional antifungals. leaves were collected in the Ecuadorian Amazon and their essential oil was obtained by steam distillation.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China. Electronic address:
To clarify the effects of pervaporation and distillation on aroma profiles, the Sensomics approach investigated the aroma characteristics and key aroma compounds of Cabernet Sauvignon (CS) and Ugni Blanc (UB) grape spirits produced by pervaporation (UB-P, CS-P) and distillation (UB-D, CS-D). The results indicated that pervaporated grape spirits exhibited stronger floral and fruity aromas, while distilled grape spirits were characterized by more pronounced cooked apple and toasty aromas. Consumers preferred products with intense floral and fruity aromas and weaker cooked apple note.
View Article and Find Full Text PDFWater Res
December 2024
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China. Electronic address:
Dense Janus membranes (JMs) are potential candidates in hypersaline wastewater treatments for membrane distillation (MD). However, dense surface layers generally add obvious membrane mass transfer resistance, limiting its practical application. In this study, a novel dense JM was facilely developed by controlled interfacial polymerization utilizing a phosphonium functional monomer (THPC) on hydrophilic polyvinylidene fluoride (PVDF) substrate.
View Article and Find Full Text PDFMembranes (Basel)
November 2024
Civil and Environmental Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Republic of Korea.
To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO), continues to pose a major challenge. This research aims to explore the scaling mechanisms in MD systems through a combination of experimental analysis and dynamic modeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!