Purpose: We previously reported that there was a subgroup of IDH-mutated astrocytomas harboring only 19q-loss showing oligodendroglioma-like morphology and significantly longer overall survival (OS) compared with 19q-intact astrocytomas. The aim of this study was to further explore the biological characteristics of this possible subgroup and obtain insight into the mechanism of their relatively benign clinical behavior.
Methods: We compared gene expression pattern between five 19q-loss and five 19q-intact IDH-mutated astrocytomas by microarray analysis.
Results: By comparing expression levels of genes of 19q-loss astrocytomas to those of 19q-intact astrocytomas, 102 up-regulated genes and 162 down-regulated genes were extracted. The down-regulated genes clustered heavily to 19q and 4p while the up-regulated genes clustered to 4q. It was noteworthy that fibroblast growth factor 1 associated with stem cell maintenance and multiple genes associated with glioma progression were down-regulated in 19q-loss astrocytomas, and these results were validated with the independent TCGA data set. On t-SNE analysis of the 19q-loss astrocytomas with other IDH-mutant glioma subgroups from the TCGA datasets, the expression pattern of the 19q-loss astrocytomas showed no shift toward oligodendrogliomas with 1p/19q codeletion but rather constituted a subgroup of astrocytoma.
Conclusions: These findings suggested that 19q-loss in astrocytomas is more likely acquired event rather than an early event in oncogenesis like the 1p/19q-codeletion in oligodendrogliomas, and that the biological features of 19q-loss astrocytomas are possibly related to differentially expressed genes associated with stem cell maintenance and glioma progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11060-021-03816-5 | DOI Listing |
Acta Neuropathol Commun
June 2024
Department of Neurosurgery, School of Medicine, Acibadem University, 34752, Istanbul, Turkey.
MYC dysregulation is pivotal in the onset and progression of IDH-mutant gliomas, mostly driven by copy-number alterations, regulatory element alterations, or epigenetic changes. Our pilot analysis uncovered instances of relative MYC overexpression without alterations in the proximal MYC network (PMN), prompting a deeper investigation into potential novel oncogenic mechanisms. Analysing comprehensive genomics profiles of 236 "IDH-mutant 1p/19q non-co-deleted" lower-grade gliomas from The Cancer Genome Atlas, we identified somatic genomic alterations within the PMN.
View Article and Find Full Text PDFJ Neurooncol
September 2021
Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
Purpose: We previously reported that there was a subgroup of IDH-mutated astrocytomas harboring only 19q-loss showing oligodendroglioma-like morphology and significantly longer overall survival (OS) compared with 19q-intact astrocytomas. The aim of this study was to further explore the biological characteristics of this possible subgroup and obtain insight into the mechanism of their relatively benign clinical behavior.
Methods: We compared gene expression pattern between five 19q-loss and five 19q-intact IDH-mutated astrocytomas by microarray analysis.
Neuro Oncol
September 2019
Department of Pathology, NYU Langone Health, New York, New York.
Background: Chromosomal instability is associated with earlier progression in isocitrate dehydrogenase (IDH)-mutated astrocytomas. Here we evaluated the prognostic significance of polysomy in gliomas tested for 1p/19q status.
Methods: We analyzed 412 histologic oligodendroglial tumors with use of 1p/19q testing at 8 institutions from 1996 to 2013; fluorescence in situ hybridization (FISH) for 1p/19q was performed.
Balkan Med J
July 2019
Department of Pathology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
Background: With the help of genetic studies, it is possible to obtain information about diagnosis and prognosis of glial tumors.
Aims: To categorize the cases according to the new World Health Organization Central Nervous System classification by reconsidering the histologic features of oligodendrogliomas, astrocytomas and oligoastrocytomas. We also evaluated whether these genetic features have prognostic significance.
Cancer Sci
July 2018
Department of Neurosurgery, Dokkyo Medical University, Mibu, Japan.
IDH-mutant gliomas are classified into astrocytic or oligodendroglial tumors by 1p/19q status in the WHO 2016 classification, with the latter presenting with characteristic morphology and better prognosis in general. However, the morphological and genetic features within each category are varied, and there might be distinguishable subtypes. We analyzed 170 WHO grade II-IV gliomas resected in our institution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!