Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has afflicted many lives and led to approvals of drugs and vaccines for emergency use. Even though vaccines have emerged, the high mortality of COVID-19 and its insurgent proliferation throughout the masses commands an innovative therapeutic proposition for the treatment. Targeted protein degradation has been applied to various disease domains and we propose that it could be incredibly beneficial to tackle the current pandemic. In this study, we have attempted to furnish insights on the design of suitable PROTACs for the main protease (M) of SARS-CoV-2, a protein that is considered to be an essential target for viral replication. We have employed protein-protein docking to predict the possible complementarity between a cereblon E3 ligase and M of SARS-CoV-2, and estimate possible linker length. Molecular Dynamic simulation and analysis on generated ternary complexes demonstrated stable interactions that suggested that designed PROTAC has a potential to cause degradation. The superior characteristics rendered by PROTACS led us to propose them as possibly the next-generation antiviral drugs for SARS-CoV-2.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2021.1953601DOI Listing

Publication Analysis

Top Keywords

protein degradation
8
main protease
8
protease sars-cov-2
8
sars-cov-2
5
protein
4
degradation novel
4
novel computational
4
computational approach
4
approach design
4
design protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!