The microtubule is regarded as the key target for designing anticancer and neurotherapeutic drugs due to its functional importance in eukaryotic cells including neurons. The microtubule is a dynamic hollow polymer tube consisting of α,β-tubulin heterodimer. Polymerization of α,β-tubulin heterodimer resulted in microtubule formation. GTP plays a crucial role in microtubule polymerization. It binds at the exchangeable binding site of the β-tubulin heterodimer, and it is one of the most crucial therapeutic hot spots for designing anticancer therapeutics. In this manuscript, we have shown using an strategy and various and cellular experiments that the binding affinity to the tubulin and cancer therapeutic potential of an exchangeable GTP/GDP binding antimitotic tetrapeptide (SP: Ser-Leu-Arg-Pro) is increased through changing proline with the multifluorine substituted proline. This study showcases the importance of the proline amino acid and its pyrrolidine ring in the regulation of binding with tubulin at the GTP binding pocket.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c04323DOI Listing

Publication Analysis

Top Keywords

substituted proline
8
gtp binding
8
binding pocket
8
designing anticancer
8
αβ-tubulin heterodimer
8
binding
7
microtubule
5
fluorine substituted
4
proline
4
proline enhances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!